生息之地

随便写写

【动态规划】【RQNOJ】第2题 开心的金明 C源码

#include<stdio.h>
#include<stdlib.h>


#define MAX 30000+1


int main(void)
{
  int v[25+1];
  int p[25+1];
  int num[MAX]={0};
  int number,money;
  int i,j;
  
  scanf("%d %d",&money,&number);
  for(i=0;i<number;i++)
  {
  scanf("%d %d",&v[i],&p[i]);
  }
  
  //动态规划 
/*
分析:
因为每件物品只有一个,所以可化为简单的背包问题:
令f[n]等于钱数为n时最大的乘积和
对于第i件物品来说,有两种情况:
1. 购买(价值为 f[n-v[i]]+v[i]*p[i])
2. 不购买 (价值为 f[n])
整理为状态转移方程:
f[n]=max{f[n],f[n-v[i]]+v[i]*p[i]}
*/
  for(i=0;i<number;i++)
  {
  for(j=money;j>=v[i];j--)
  {
   num[j]=(num[j]>num[j-v[i]]+v[i]*p[i])?num[j]:(num[j-v[i]]+v[i]*p[i]);
  }
  }
  printf("%d\n",num[money]);
  
  return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012837895/article/details/17149531
文章标签: 动态规划 c
个人分类: 算法学习
上一篇学习kruskal
下一篇C++对文件的输入输出
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭