连续非周期信号傅里叶变换 — Fourier Transforms of Continuous-Time Aperiodic Signals

之前写过一篇关于连续周期信号傅里叶级数的文章,是将任何一个周期函数分解为一系列正弦函数或指数组合的工具。而本文的傅里叶变换则是被用来将一个非周期函数分解为一系列正弦函数或指数的组合。【本文的推导是基于傅里叶级数,强烈建议先了解连续周期信号傅里叶级数

一个周期函数的傅里叶级数为:
f ( t ) = ∑ k = − ∞ ∞ [ ω 0 2 π ∫ 0 2 π ω 0 f ( t ) e − i k ω 0 t d t ] e i k ω 0 t f(t) = \sum_{k=-\infty}^{\infty} [\frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{-ik\omega_{0} t}dt] e^{ik\omega_{0} t} f(t)=k=[2πω00ω02πf(t)eikω0tdt]eikω0t

其中, ω 0 \omega_{0} ω0为基频,即为角频率的最小单元; k k k为整数,取值从负无穷到正无穷。

傅里叶变换的思想就是将非周期函数作为周期为无穷的周期函数处理。因此,上式变化为:
f ( t ) = ∑ k = − ∞ ∞ [ ω 0 2 π ∫ 0 2 π ω 0 f ( t ) e − i k ω 0 t d t ] e i k ω 0 t = ∑ k = − ∞ ∞ [ 1 T ∫ − ∞ ∞ f ( t ) e − i k 2 π T t d t ] e i k 2 π T t \begin{aligned} & f(t) = \sum_{k=-\infty}^{\infty} [\frac{\omega_{0}}{2\pi} \int_{0}^{\frac{2\pi}{\omega_{0}}}f(t)e^{-ik\omega_{0} t}dt] e^{ik\omega_{0} t} \\ & = \sum_{k=-\infty}^{\infty} [\frac{1}{T} \int_{-\infty}^{\infty}f(t)e^{-ik \frac{2\pi}{T} t}dt] e^{ik \frac{2\pi}{T} t} \end{aligned} f(t)=k=[2πω00ω02πf(t)eikω0tdt]eikω0t=k=[T1f(t)eikT2πtdt]eikT2πt

令上式中 2 π k T = ω \frac{2\pi k}{T} = \omega T2πk=ω【由于周期 T T T值无穷大,所以 ω \omega ω值无穷小】。另因为 k k k为整数, d k dk dk表示 k k k值一次的变化量,所以 d k = 1 dk=1 dk=1。那么 ∑ k = − ∞ ∞ … d k \sum_{k=-\infty}^{\infty} \dots dk k=dk等价于 ∫ − ∞ ∞ … d k \int_{-\infty}^{\infty} \dots dk dk。因此,上式继续推导:
f ( t ) = ∑ k = − ∞ ∞ [ 1 T ∫ − ∞ ∞ f ( t ) e − i k 2 π T t d t ] e i k 2 π T t = ∫ − ∞ ∞ [ 1 T ∫ − ∞ ∞ f ( t ) e − i k 2 π T t d t ] e i k 2 π T t d k = ∫ − ∞ ∞ [ 1 T ∫ − ∞ ∞ f ( t ) e − i ω t d t ] e i ω t T 2 π d ω = 1 2 π ∫ − ∞ ∞ [ ∫ − ∞ ∞ f ( t ) e − i ω t d t ] e i ω t d ω \begin{aligned} & f(t) = \sum_{k=-\infty}^{\infty} [\frac{1}{T} \int_{-\infty}^{\infty}f(t)e^{-ik \frac{2\pi}{T} t}dt] e^{ik \frac{2\pi}{T} t} \\ & = \int_{-\infty}^{\infty} [\frac{1}{T} \int_{-\infty}^{\infty}f(t)e^{-ik \frac{2\pi}{T} t}dt] e^{ik \frac{2\pi}{T} t} dk \\ & = \int_{-\infty}^{\infty} [\frac{1}{T} \int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt] e^{i\omega t} \frac{T}{2\pi}d\omega \\ & = \frac{1}{2\pi} \int_{-\infty}^{\infty} [\int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt] e^{i\omega t} d\omega \end{aligned} f(t)=k=[T1f(t)eikT2πtdt]eikT2πt=[T1f(t)eikT2πtdt]eikT2πtdk=[T1f(t)eiωtdt]eiωt2πTdω=2π1[f(t)eiωtdt]eiωtdω

X ( i ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t X(i\omega) = \int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt X(iω)=f(t)eiωtdt,得到函数上式的另一种形式:
{ f ( t ) = 1 2 π ∫ − ∞ ∞ X ( i ω ) e i ω t d ω X ( i ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t \begin{cases} & f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(i\omega) e^{i\omega t} d\omega \\ & X(i\omega) = \int_{-\infty}^{\infty}f(t)e^{-i\omega t}dt \end{cases} {f(t)=2π1X(iω)eiωtdωX(iω)=f(t)eiωtdt

至此,我们已经得到函数 f f f的傅里叶变换 X X X,且函数 f f f称为函数 X X X的逆变换。

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值