利用多模态输入的自我中心运动跟踪与理解框架:EgoLM

随着增强现实(AR)和虚拟现实(VR)技术的发展,对自我中心(第一人称视角)运动的精确跟踪和理解变得越来越重要。传统的单一模态方法在处理复杂场景时存在诸多局限性。为了解决这些问题,研究者们提出了一种基于多模态输入的自我中心运动跟踪与理解框架——EgoLM。本文将详细介绍这一创新方案及其潜在应用。

1. 概述

EgoLM框架旨在从多模态输入(如自我中心视频和运动传感器数据)中跟踪和理解自我中心运动。通过利用丰富的上下文信息,该框架能够有效消除单一模态条件下自我运动跟踪和理解的不确定性。

2. 核心技术
2.1 联合分布建模
  • 使用大型语言模型(LLM):EgoLM框架利用大型语言模型来建模自我中心运动和自然语言的联合分布。这种联合建模方式有助于更好地理解和解释复杂的运动行为。
2.2 多模态输入处理
  • 编码与投影:将来自不同传感器的多模态输入(例如视频流和运动传感器数据)进行编码,并将其投影到一个由语言模型定义的联合潜在空间中。这一步骤使得多种类型的数据可以在同一空间内进行有
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生糖@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值