在人工智能与数字人技术的融合浪潮中,阿里巴巴通义实验室推出的 OmniTalker 模型,以端到端的统一框架和突破性的音视频同步能力,为实时交互式数字人生成树立了新的标杆。这一项目不仅解决了传统级联系统中音画不同步、风格不一致的痛点,更通过轻量化设计与零样本风格复制技术,为虚拟助手、直播、教育等场景提供了高效、逼真的解决方案。
一、技术痛点与OmniTalker的突破
1. 传统方法的局限性
- 级联式流程:传统数字人生成依赖文本转语音(TTS)与音频驱动视频生成的串联,导致:
- 延迟高:各模块间数据传递增加响应时间。
- 风格不一致:语音与面部表情的生成逻辑分离,易出现“口型与声音不匹配”或“表情僵硬”问题。
- 依赖多数据源:需额外提取语音和视觉风格特征,流程复杂。