在AI技术快速发展的今天,创业者如何构建真正具备商业价值和用户粘性的产品?红杉资本AI合伙人(前Claude CPO)的创业思考笔记,为AI产品的设计与落地提供了深刻的洞察。以下是基于其核心观点的深度解析与技术实践建议。
1. AI产品不是“规划”出来的,而是“发掘”出来的
背景挑战
传统软件开发(如Instagram)依赖明确的需求文档和分阶段执行,而AI产品(尤其是大模型驱动)的核心在于动态探索。模型能力本身具有不确定性,真正的价值往往通过实验性探索和快速迭代被发现。
实践建议
- 让一线团队靠近模型:鼓励工程师和产品经理直接接触模型训练与调优,而非依赖抽象的文档。
- 从原型到抽象:初期通过快速原型验证可行性,直到第三次迭代后再抽象出通用架构(例如MCP协议的诞生过程)。
- 案例:Anthropic的