出处:ACL 2019
code: https://github.com/czhang99/Capsule-NLU
一、摘要
之前对于槽位填充和意图检测的工作都是将两者分开进行的,即使有同时进行的,也没有明显考虑word、slot和intent的层级关系。因此作者基于胶囊网络,提出一种带有re-routing机制和routing-by-agreement机制的胶囊网络来联合进行槽位填充和意图检测工作。
二、方法
模型架构如下图所示,整体类似于2017 hinton提出的胶囊网络,图中Dynamic Routing即routing-by-agreement机制。不同点是加入了re-routing机制,这种机制的动机是,如果intent确定了,那么希望intent能够指导slot填充。
Dynamic Routing算法如下:
引入re-routing机制后对bkt的更新公式变为:
其中pk|t是slot胶囊k对word胶囊t的预测向量,vk是slot胶囊k的输出向量,WRR是可学习参数,u是概率值最大的intent胶囊的输出向量。
三、实验结果
"w/o Intent Detection"是去掉intent检测,"w/o Joint Training"是分两阶段分别训练slot和intent。