《Joint Slot Filling and Intent Detection via Capsule Neural Networks》

出处:ACL 2019
code: https://github.com/czhang99/Capsule-NLU

一、摘要

之前对于槽位填充和意图检测的工作都是将两者分开进行的,即使有同时进行的,也没有明显考虑word、slot和intent的层级关系。因此作者基于胶囊网络,提出一种带有re-routing机制和routing-by-agreement机制的胶囊网络来联合进行槽位填充和意图检测工作。

二、方法

模型架构如下图所示,整体类似于2017 hinton提出的胶囊网络,图中Dynamic Routing即routing-by-agreement机制。不同点是加入了re-routing机制,这种机制的动机是,如果intent确定了,那么希望intent能够指导slot填充。
在这里插入图片描述
Dynamic Routing算法如下:
在这里插入图片描述
引入re-routing机制后对bkt的更新公式变为:
在这里插入图片描述
其中pk|t是slot胶囊k对word胶囊t的预测向量,vk是slot胶囊k的输出向量,WRR是可学习参数,u是概率值最大的intent胶囊的输出向量。

三、实验结果

"w/o Intent Detection"是去掉intent检测,"w/o Joint Training"是分两阶段分别训练slot和intent。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值