论文部分
Abstract
根据slot和intent之间的关系,提出了一种slot gate来学习intent和slot向量之间的关系,通过全局优化来获得更好地语义信息。
Introduction
由于slot通常高度依赖于intent,因此本工作重点介绍如何通过引入slot gate来建模slot和intent向量之间的显式关系:
- slot gated模型效果比基于注意力的模型具有更好的性能;
- 对两个SLU数据集的实验表明了所提出的slot gate的推广和有效性;
- gating表示有助于我们学习 slot-intent 之间的关系。
Proposed Approach
模型架构图。
可以看出,该模型主要是将单词序列输入一个双向的LSTM中
state_outputs, final_state = tf.nn.bidirectional_dynamic_rnn(cell_fw,
cell_bw,
inputs,
sequence_length=sequence_length,
dtype=tf.float32)
对于输出部分,将其通