【论文阅读】Slot-Gated Modeling for Joint Slot Filling and Intent Prediction

论文部分

Abstract

根据slot和intent之间的关系,提出了一种slot gate来学习intent和slot向量之间的关系,通过全局优化来获得更好地语义信息。

Introduction

由于slot通常高度依赖于intent,因此本工作重点介绍如何通过引入slot gate来建模slot和intent向量之间的显式关系:

  • slot gated模型效果比基于注意力的模型具有更好的性能;
  • 对两个SLU数据集的实验表明了所提出的slot gate的推广和有效性;
  • gating表示有助于我们学习 slot-intent 之间的关系。

Proposed Approach

模型架构图。

可以看出,该模型主要是将单词序列输入一个双向的LSTM中

state_outputs, final_state = tf.nn.bidirectional_dynamic_rnn(cell_fw,
                                                                 cell_bw,
                                                                 inputs,
                                                                 sequence_length=sequence_length,
                                                                 dtype=tf.float32)

对于输出部分,将其通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值