LLM大模型中的model.generate()和model.chat()函数

在 Hugging Face 的 transformers 库中,GPT(Generative Pre-trained Transformer)类的模型有两个常用的生成文本的方法:generatechat。这两个方法在使用上有一些区别。通常公司发布的 LLM 模型会有一个基础版本,还会有一个 Chat 版本。比如,Qwen-7B(基础版本)和 Qwen-7B-Chat(Chat 版本)。

1. model.generate()方法

  • generate 方法是模型的原生方法,用于生成文本。
  • 通常用于批量生成文本数据,可以根据特定的输入和条件生成一组文本。
  • 使用时需要传递一些参数,如 max_length(生成文本的最大长度)、num_beams(束搜索的数量,用于增强生成的多样性)等。

函数说明

  • 主要参数包括:
- input_ids: 启动生成的输入token ID的张量。
- max_length: (可选)生成文本的最大长度。
- min_length: (可选)生成文本的最小长度。
- do_sample: (可选)是否在每一步进行概率采样来选择下一个token。
- temperature: (可选)调节随机性的温度参数。
- top_k: (可选)每一步中考虑的最高概率token的数量。
- top_p: (可选)进行nucleus sampling时使用的累积概率阈值。
- num_beams: (可选)波束搜索中使用的波束数。
- no_repeat_ngram_size: (可选)禁止生成中重复出现的n-gram大小。
- 其他生成特定的参数。
  • 输出结果为:
- 生成的token ID序列。通常这些token ID可以用分配的tokenizer解码为文本。

代码样例

这里以 ChatGLM-6B 模型为例,模型文件已下载至本地路径。

from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda:0"

# 直接加载模型
model_path = "./model/chatglm-6b"
tokenizer = AutoTokenizer
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值