Layout
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7342 | Accepted: 3524 |
Description
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.
Input
Line 1: Three space-separated integers: N, ML, and MD.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.
Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.
Output
Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.
Sample Input
4 2 1 1 3 10 2 4 20 2 3 3
Sample Output
27
Hint
Explanation of the sample:
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.
The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.
此题虽然简单,但想要真正做对并非易事。只是poj的测试数据实在太水了。网上的大部分题解都是有问题的。
首先列出约束条件
ML(i,j,w):x[j]-x[i]<=w
MD(i,j,w):x[i]-x[j]<=-w
注意:还有x[i-1]-x[i]<=0,2<=i<=n,这个条件是必要的,可以很容易构造出例子在不加上述条件下,结果是错的,可是poj竟然可以过。
此题必须加超级源点0,如果图不连通,又不加超级源点0,那么答案显然是错的,可是poj又过了。
并且判断x[n]-x[1]是否有最大值时,需要去掉超级源点0,重新建图,并且从源点1开始,继续1遍bellman-ford,如果缺少以上的任意步骤,都是错的。所以只能说poj数据太水了。
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#define Maxn 10010
using namespace std;
struct line{
int u,v,w;
line(int uu=0,int vv=0,int ww=0):u(uu),v(vv),w(ww){}
}p[4*Maxn];
const int inf=0x3f3f3f3f;
int dist[Maxn],n,tot;
bool bellman(int u){
for(int i=0;i<=n;i++)
dist[i]=inf;
dist[u]=0;
for(int i=0;i<n;i++)
for(int j=0;j<tot;j++){
int u=p[j].u,v=p[j].v,w=p[j].w;
if(dist[u]!=inf&&dist[u]+w<dist[v]) dist[v]=dist[u]+w;
}
for(int j=0;j<tot;j++){
int u=p[j].u,v=p[j].v,w=p[j].w;
if(dist[u]!=inf&&dist[u]+w<dist[v]) return false;
}
return true;
}
int main()
{
int l,d,fr,to,w;
scanf("%d%d%d",&n,&l,&d);
tot=0;
for(int i=0;i<l;i++){
scanf("%d%d%d",&fr,&to,&w);
p[tot++]=line(fr,to,w);
}
for(int i=0;i<d;i++){
scanf("%d%d%d",&fr,&to,&w);
p[tot++]=line(to,fr,-w);
}
for(int i=2;i<=n;i++)
p[tot++]=line(i,i-1,0);
int tmp=tot;
for(int i=1;i<=n;i++)
p[tot++]=line(0,i,0);
if(!bellman(0)) puts("-1");
else{
tot=tmp;
bellman(1);
if(dist[n]==inf) puts("-2");
else printf("%d\n",dist[n]);
}
return 0;
}