文章目录
在机器学习和深度学习任务中,使用 Docker 可以方便地构建和管理环境,特别是在涉及到复杂的依赖关系和 GPU 加速的情况下。本文将介绍如何使用 Docker 构建一个 PyTorch 环境,并在其中运行训练脚本。
准备工作
首先,我们需要编写一个 Dockerfile,该文件描述了我们的 Docker 镜像应该包含的内容和操作步骤。以下是一个示例 Dockerfile:
# 使用官方 PyTorch 镜像作为基础镜像
FROM pytorch/pytorch:1.8.0-cuda11.1-cudnn8-devel
# 设置工作目录
WORKDIR /app
# 复制应用程序代码到镜像中
COPY train.py /app/train.py
# 安装应用程序依赖
#RUN pip install --no-cache-dir -r requirements.txt # 如果有额外的依赖,可以在 requirements.txt 中指定
RUN pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy==1.20.3
RUN pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch torchvision pandas tqdm seaborn requests
# 启动应用程序
CMD ["python", "train.py"]
在这个 Dockerfile 中,我们使用了官方提供的 PyTorch 镜像作为基础镜像,然后安装了我们的应用程序所需的 Python 包,并设置了应用程序的启动命令。
其中,train.py是我们训练的Python脚本&#x