推荐一篇论文 http://wenku.baidu.com/view/1856cf84b9d528ea81c77918.html
把Y 方向上的坐标离散了
按照论文里描述的扫描线的思想。
设计线段树每个节点的数据结构
我设计的是
struct node
{
double y1,y2;
double len;
bool cover;
int cnt;// this line were covered cnt times, if this is 0 return he's children's covered length
}data[MAX<<2];
每个节点代表一段,y1,y2代表线段顶坐标和底坐标,len代表此段长度,cover表示此段有没有被覆盖的线段,cnt代表这段线段被覆盖了几次
进入一个矩形,增加一次 cnt ,离开一次矩形,减少一次 cnt。
然后用线段树保存这些数据,通过query来获得所有的。
我一开始想在data里直接保存这一段总共有多少,发现,这样很难统计被覆盖了几次这个信息。还是利用一次query吧。不过这个query和总共有多少的连续线段有关,不是 log(n) 的。鉴于数据较小, 0ms 过也没什么压力。
这题 PE 到死。。
#include <stdio.h>
#include <iostream>
#include <queue>
#include <algorithm>
#include <map>
#include <vector>
#include <cmath>
#include <string.h>
using namespace std;
#define READ freopen("acm.in","r",stdin)
#define ll long long
#define PII pair<int,int>
#define PDI pair<double,int>
#define MPI map<int,int>::iterator
#define fst first
#define sec second
#define MS(x,d) memset(x,d,sizeof(x))
#define INF 0x3f3f3f3f
#define ALL(x) x.begin(),x.end()
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define MAX 2000
#define ROOT 0,n-1,1
#define PB push_back
//start from 0
vector<double> X;
vector<double> Y;
struct node
{
double y1,y2;
double len;
bool cover;
int cnt;// this line were covered cnt times, if this is 0 return he's children's covered length
}data[MAX<<2];
int col[MAX<<2];
struct line
{
double x,y1,y2;
int flag;
void print()
{
printf("x %f y1 %f y2 %f flag %d\n",x,y1,y2,flag);
}
bool operator < (const line &o) const
{
return x<o.x;
}
};
vector<line> scan;
void PushUp(int rt)
{
node &ls=data[rt<<1];
node &rs=data[rt<<1|1];
data[rt].cnt=min(ls.cnt,rs.cnt);
data[rt].cover=ls.cover||rs.cover;
data[rt].y1=ls.y1;
data[rt].y2=rs.y2;
data[rt].len=data[rt].y2-data[rt].y1;
}
void build(int l,int r,int rt)
{
if(l==r)
{
data[rt].y1=Y[l];
data[rt].y2=Y[r+1];
data[rt].len=data[rt].y2-data[rt].y1;
data[rt].cover=0;
data[rt].cnt=0;
return ;
}
int m=(l+r)>>1;
build(lson);
build(rson);
PushUp(rt);
}
void PushDown(int rt)
{
if(col[rt])
{
node &root=data[rt];
node &ls=data[rt<<1];
node &rs=data[rt<<1|1];
ls.cnt+=col[rt];
rs.cnt+=col[rt];
col[rt<<1]+=col[rt];
col[rt<<1|1]+=col[rt];
col[rt]=0;
}
}
double query(int l,int r,int rt)
{
if(!data[rt].cover)
return 0.0;
if(l==r)
{
if(data[rt].cnt==0)
return 0.0;
else
return data[rt].len;
}
PushDown(rt);
if(data[rt].cnt>0)
return data[rt].len;
int m=(l+r)>>1;
double ans=query(lson)+query(rson);
PushUp(rt);
return ans;
}
void update(int L,int R,int flag,int l,int r,int rt)
{
if(L>r||R<l)
return ;
if(L<=l&&r<=R)
{
if(flag==1)
{
col[rt]+=1;
data[rt].cnt+=1;
data[rt].cover=1;
}
if(flag==-1)
{
col[rt]-=1;
data[rt].cnt-=1;
}
return ;
}
PushDown(rt);
int m=(l+r)>>1;
update(L,R,flag,lson);
update(L,R,flag,rson);
PushUp(rt);
}
void init()
{
Y.clear();
MS(col,0);
MS(data,0);
scan.clear();
}
int main()
{
READ;
int n;
int T=0;
while(scanf("%d",&n)&&n)
{
init();
for(int i=0;i<n;i++)
{
double x1,x2,y1,y2;
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
Y.PB(y1);
Y.PB(y2);
scan.PB((line){x1,y1,y2,1});
scan.PB((line){x2,y1,y2,-1});
}
sort(ALL(scan));
sort(ALL(Y));
Y.erase(unique(ALL(Y)),Y.end());
double before=scan[0].x;
double ans=0;
build(0,Y.size()-2,1);
for(int i=0;i<scan.size();i++)
{
if(scan[i].x!=before)
{
ans+=(scan[i].x-before)*query(0,Y.size()-2,1);
before=scan[i].x;
}
if(scan[i].x==before)
{
int l=lower_bound(ALL(Y),scan[i].y1-1e-9)-Y.begin();
int r=lower_bound(ALL(Y),scan[i].y2-1e-9)-Y.begin()-1;
update(l,r,scan[i].flag,0,Y.size()-2,1);
}
}
printf("Test case #%d\n",++T);
//Total explored area: %.2f\n",++T,ans);
printf("Total explored area: %.2f \n\n",ans);
}
return 0;
}