POJ 1151 线段树 矩形面积并

推荐一篇论文 http://wenku.baidu.com/view/1856cf84b9d528ea81c77918.html

把Y 方向上的坐标离散了

按照论文里描述的扫描线的思想。

设计线段树每个节点的数据结构

我设计的是

struct node
{
    double y1,y2;
    double len;
    bool cover;
    int cnt;// this line were covered cnt times, if this is 0 return he's children's covered length
}data[MAX<<2];

每个节点代表一段,y1,y2代表线段顶坐标和底坐标,len代表此段长度,cover表示此段有没有被覆盖的线段,cnt代表这段线段被覆盖了几次

进入一个矩形,增加一次 cnt ,离开一次矩形,减少一次 cnt。

然后用线段树保存这些数据,通过query来获得所有的。

我一开始想在data里直接保存这一段总共有多少,发现,这样很难统计被覆盖了几次这个信息。还是利用一次query吧。不过这个query和总共有多少的连续线段有关,不是 log(n) 的。鉴于数据较小, 0ms 过也没什么压力。

这题 PE 到死。。

#include <stdio.h>
#include <iostream>
#include <queue>
#include <algorithm>
#include <map>
#include <vector>
#include <cmath>
#include <string.h>
using namespace std;

#define READ freopen("acm.in","r",stdin)
#define ll long long
#define PII pair<int,int>
#define PDI pair<double,int>
#define MPI map<int,int>::iterator 
#define fst first
#define sec second
#define MS(x,d) memset(x,d,sizeof(x))
#define INF 0x3f3f3f3f
#define ALL(x) x.begin(),x.end()
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define MAX 2000
#define ROOT 0,n-1,1
#define PB push_back

//start from 0
vector<double> X;
vector<double> Y;

struct node
{
    double y1,y2;
    double len;
    bool cover;
    int cnt;// this line were covered cnt times, if this is 0 return he's children's covered length
}data[MAX<<2];

int col[MAX<<2];
struct line
{
    double x,y1,y2;
    int flag;
    void print()
    {
        printf("x %f y1 %f y2 %f flag %d\n",x,y1,y2,flag);
    }
    bool operator < (const line &o) const
    {   
        return x<o.x;
    }
};
vector<line> scan;

void PushUp(int rt)
{
    node &ls=data[rt<<1];
    node &rs=data[rt<<1|1];

    data[rt].cnt=min(ls.cnt,rs.cnt);
    data[rt].cover=ls.cover||rs.cover;

    data[rt].y1=ls.y1;
    data[rt].y2=rs.y2;
    data[rt].len=data[rt].y2-data[rt].y1;
}
void build(int l,int r,int rt)
{
    if(l==r)
    {
        data[rt].y1=Y[l];
        data[rt].y2=Y[r+1];
        data[rt].len=data[rt].y2-data[rt].y1;
        data[rt].cover=0;
        data[rt].cnt=0;
        return ;
    }
    int m=(l+r)>>1;
    build(lson);
    build(rson);
    PushUp(rt);
}
void PushDown(int rt)
{
    if(col[rt])
    {   
        node &root=data[rt];
        node &ls=data[rt<<1];
        node &rs=data[rt<<1|1];
        ls.cnt+=col[rt];
        rs.cnt+=col[rt];
        col[rt<<1]+=col[rt];
        col[rt<<1|1]+=col[rt];
        col[rt]=0;
    }
}
double query(int l,int r,int rt)
{
    if(!data[rt].cover)
        return 0.0;
    if(l==r)
    {
        if(data[rt].cnt==0)
            return 0.0;
        else
            return data[rt].len;
    }
    PushDown(rt);
    if(data[rt].cnt>0)
        return data[rt].len;
    int m=(l+r)>>1;
    double ans=query(lson)+query(rson);
    PushUp(rt);
    return ans;
}
void update(int L,int R,int flag,int l,int r,int rt)
{
    if(L>r||R<l)
        return ;
    if(L<=l&&r<=R)
    {
        if(flag==1)
        {
            col[rt]+=1;
            data[rt].cnt+=1;
            data[rt].cover=1;
        }
        if(flag==-1)
        {
            col[rt]-=1;
            data[rt].cnt-=1;
        }
        return ;
    }
    PushDown(rt);
    int m=(l+r)>>1;
    update(L,R,flag,lson);
    update(L,R,flag,rson);
    PushUp(rt);
}
void init()
{
    Y.clear();
    MS(col,0);
    MS(data,0);
    scan.clear();
}
int main()
{
    READ;

    int n;
    int T=0;
    while(scanf("%d",&n)&&n)
    {
        init();
        for(int i=0;i<n;i++)
        {
            double x1,x2,y1,y2;
            scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
            Y.PB(y1);
            Y.PB(y2);
            scan.PB((line){x1,y1,y2,1});
            scan.PB((line){x2,y1,y2,-1});
        }
        sort(ALL(scan));
        sort(ALL(Y));
        Y.erase(unique(ALL(Y)),Y.end());
        double before=scan[0].x;
        double ans=0;
        build(0,Y.size()-2,1);
        for(int i=0;i<scan.size();i++)
        {
            if(scan[i].x!=before)
            {
                ans+=(scan[i].x-before)*query(0,Y.size()-2,1);
                before=scan[i].x;
            }
            if(scan[i].x==before)
            {
                int l=lower_bound(ALL(Y),scan[i].y1-1e-9)-Y.begin();
                int r=lower_bound(ALL(Y),scan[i].y2-1e-9)-Y.begin()-1;
                update(l,r,scan[i].flag,0,Y.size()-2,1);
            }
        }
        printf("Test case #%d\n",++T);
        //Total explored area: %.2f\n",++T,ans);
        printf("Total explored area: %.2f \n\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值