HDU 5157 Harry and magic string 【Palindromic Tree】

回文树第一题,太裸了。
题目分析:
令len为字符串长度,字符串下标从0开始。从字符串最后一个字符开始插入回文树构造回文树,记录以下标i~len-1为起点的回文串的个数的sum[i]。然后再正着构造一次回文树,边构造边累加答案,设x为以下标i的字符为结尾的回文串个数,则ans+=x*sum[i+1]。
最后输出ans即可。
PS:如果想了解回文树,可以戳这里:Palindromic Tree——回文树【处理一类回文串问题的强力工具】

//      whn6325689
//      Mr.Phoebe
//      http://blog.csdn.net/u013007900
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
#include <functional>
#include <numeric>
#pragma comment(linker, "/STACK:1024000000,1024000000")

using namespace std;

#define eps 1e-9
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define LLINF 1LL<<62
#define speed std::ios::sync_with_stdio(false);

typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<ll, ll> pll;
typedef complex<ld> point;
typedef pair<int, int> pii;
typedef pair<pii, int> piii;
typedef vector<int> vi;

#define CLR(x,y) memset(x,y,sizeof(x))
#define CPY(x,y) memcpy(x,y,sizeof(x))
#define clr(a,x,size) memset(a,x,sizeof(a[0])*(size))
#define cpy(a,x,size) memcpy(a,x,sizeof(a[0])*(size))

#define mp(x,y) make_pair(x,y)
#define pb(x) push_back(x)
#define lowbit(x) (x&(-x))

#define MID(x,y) (x+((y-x)>>1))
#define ls (idx<<1)
#define rs (idx<<1|1)
#define lson ls,l,mid
#define rson rs,mid+1,r
#define root 1,1,n

template<class T>
inline bool read(T &n)
{
    T x = 0, tmp = 1;
    char c = getchar();
    while((c < '0' || c > '9') && c != '-' && c != EOF) c = getchar();
    if(c == EOF) return false;
    if(c == '-') c = getchar(), tmp = -1;
    while(c >= '0' && c <= '9') x *= 10, x += (c - '0'),c = getchar();
    n = x*tmp;
    return true;
}
template <class T>
inline void write(T n)
{
    if(n < 0)
    {
        putchar('-');
        n = -n;
    }
    int len = 0,data[20];
    while(n)
    {
        data[len++] = n%10;
        n /= 10;
    }
    if(!len) data[len++] = 0;
    while(len--) putchar(data[len]+48);
}
//-----------------------------------

const int MAXN = 100010 ;  
const int N = 26 ;  

struct Palindromic_Tree {  
    int next[MAXN][N] ;//next指针,next指针和字典树类似,指向的串为当前串两端加上同一个字符构成  
    int fail[MAXN] ;//fail指针,失配后跳转到fail指针指向的节点  
    int cnt[MAXN] ;  
    int num[MAXN] ;  
    int len[MAXN] ;//len[i]表示节点i表示的回文串的长度  
    int S[MAXN] ;//存放添加的字符  
    int last ;//指向上一个字符所在的节点,方便下一次add  
    int n ;//字符数组指针  
    int p ;//节点指针  

    int newnode ( int l ) {//新建节点  
        for ( int i = 0 ; i < N ; ++ i ) next[p][i] = 0 ;  
        cnt[p] = 0 ;  
        num[p] = 0 ;  
        len[p] = l ;  
        return p ++ ;  
    }  

    void init () {//初始化  
        p = 0 ;  
        newnode (  0 ) ;  
        newnode ( -1 ) ;  
        last = 0 ;  
        n = 0 ;  
        S[n] = -1 ;//开头放一个字符集中没有的字符,减少特判  
        fail[0] = 1 ;  
    }  

    int get_fail ( int x ) {//和KMP一样,失配后找一个尽量最长的  
        while ( S[n - len[x] - 1] != S[n] ) x = fail[x] ;  
        return x ;  
    }  

    int add ( int c ) {  
        c -= 'a' ;  
        S[++ n] = c ;  
        int cur = get_fail ( last ) ;//通过上一个回文串找这个回文串的匹配位置  
        if ( !next[cur][c] ) {//如果这个回文串没有出现过,说明出现了一个新的本质不同的回文串  
            int now = newnode ( len[cur] + 2 ) ;//新建节点  
            fail[now] = next[get_fail ( fail[cur] )][c] ;//和AC自动机一样建立fail指针,以便失配后跳转  
            next[cur][c] = now ;  
            num[now] = num[fail[now]] + 1 ;  
        }  
        last = next[cur][c] ;  
        cnt[last] ++ ; 
        return num[last];
    }  

    void count () {  
        for ( int i = p - 1 ; i >= 0 ; -- i ) cnt[fail[i]] += cnt[i] ;  
        //父亲累加儿子的cnt,因为如果fail[v]=u,则u一定是v的子回文串!  
    }  
}T; 

char str[MAXN];
ll sum[MAXN],ans;

int main()
{
    while(~scanf("%s",str))
    {
        T.init();CLR(sum,0);ans=0;
        int len=strlen(str);
        for(int i=len-1;i>=0;i--)
            sum[i]=sum[i+1]+T.add(str[i]);
        T.init();
        for(int i=0;i<len;i++)
            ans+=sum[i+1]*T.add(str[i]);
        write(ans),putchar('\n');

    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>