HDU5157 Harry and magic string manacher+差分前缀和/树状数组

这道题思路并不难想(假的!):先用manacher算法求出以s[i]为中心的最长回文子串左右扩展的长度,再分别推出以s[i]结尾和开头的回文子串(注:不一定是最长的。如原串为aacaa,则i=3时,en[i]=2而不是1)数量,然后其中一组乘上另外一组的后缀和(前缀和)相加即可。简单分析一下第一个样例:

                原数组的下标 i:     0   1   2

                                                a   c   a

     以s[i]结尾的回文串数量:  1   1   2     -> en[]数组

     以s[i]开头的回文串数量:  2   1   1      -> st[]数组

    则答案为1×(1+1) + 1×1 = 3

问题主要是如何推出st,en数组。我一开始是这么写的:

    for(int i=2;i<l;i++)
    {
        int k=i+p[i]-1;//最长回文串扩展的右边界(a数组中)
        int j=ceil((i*1.0-2)/2);//回文串中心(映射到原s数组下标)
        while(j<=(k-2)/2)//同样要映射到s数组的下标
            en[j]++,j++;
    }
    for(int i=0,j=len-1;i<len&&j>=0;i++,j--)
        st[i]=en[j];

两层循环果断TLE。。只能换思路。。后来网上一搜发现可以用树状数组来维护。

先附上大佬博客Orz:https://www.cnblogs.com/liyinggang/p/5675916.html

                                  https://blog.csdn.net/hexianhao/article/details/51823113

以en数组为例,假设以i为中心(a[i]不一定是字母,要“映射”到新下标(从1开始)),则从i到i+p[i]-1这些点的en值都要加1。我不太明白为什么把到右端点的数-1,再把到中心的数+1(我感觉刚好反了)。后来我写了一发但还是WA了QAQ...不明白为什么会酱紫55555...可能还是对树状数组的理解不够?把solve函数放在这里,如果有大神知道为什么错了还请不吝赐教^_^

ll st[MAX];//以s[i]开头的回文子串数
ll en[MAX];//以s[i]结尾的回文子串数
ll c[MAX];
ll sum[MAX];
int lowbit(int x)
{
    return x&(-x);
}
void update(int i,int val)
{
    while(i<=n)
    {
        c[i]+=val;
        i+=lowbit(i);
    }
}
int get_sum(int i)
{
    int ret=0;
    while(i>0)
    {
        ret+=c[i];
        i-=lowbit(i);
    }
    return ret;
}
 
void fun()
{
    memset(c,0,sizeof(c));
    for(int i=2;i<l;i++)
    {
        int mid;//回文串中心(映射到原s数组下标,但注意下标从1开始)
        if(i%2==0)//字母
            mid=i/2;
        else //'#'
            mid=(i+1)/2;
        int k=i+p[i]-1;//最长回文串扩展的右边界(a数组中)
        int r=k/2+1;//映射到原s数组
        if(r<=mid)
            continue;
        //cout<<"i="<<i<<" l="<<l<<" r="<<r<<endl;
        update(mid,1);
        update(r,-1);
        //c[mid,r]+1
    }
}
void solve() //得到st,en数组
{
    memset(st,0,sizeof(st));
    memset(en,0,sizeof(en));
    fun();
    for(int i=1;i<=n;i++)
        en[i]=get_sum(i);
    /*for(int i=1;i<=n;i++)
        cout<<"i="<<i<<" en[i]="<<en[i]<<endl;*/
    reverse(s,s+n);
    manacher();
    fun();
    for(int i=1;i<=n;i++)
        st[i]=get_sum(i);
}

我还是选择继续挣扎。。再一搜题解,发现可以用“差分前缀和”(第一次听说QAQ...)

附上讲解博客Orz:https://blog.csdn.net/hzk_cpp/article/details/80407014

                               https://www.cnblogs.com/lulizhiTopCoder/p/8384784.html

感觉有点像树状数组,处理思路也差不多。再附上本题的参考博客Orz:

https://blog.csdn.net/gatevin/article/details/44775533

经过长期挣扎。。终于过了。。注意WA点开long long啊!!!!!附上AC代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<queue>
using namespace std;
#define ll long long
typedef pair<int,int>pp;
#define mkp make_pair
#define pb push_back
const int INF=0x3f3f3f3f;
const ll MOD=1e9+(ll)7;

const int MAX=100010;
char s[MAX];
int n;

char a[MAX*2];
int len,p[MAX*2];//以s[i]为中心的最长回文子串右(左)扩展的长度
void manacher()
{
    memset(p,0,sizeof(p));
    len=0;
    a[len++]='$';
    a[len++]='#';
    for(int i=0;i<n;i++)
    {
        a[len++]=s[i];
        a[len++]='#';
    }
    a[len]='\0';
    int mx=0,id=0;
    for(int i=0;i<len;i++)
    {
        p[i]=(mx-i)?min(p[2*id-i],mx-i):1;
        while(a[i+p[i]]==a[i-p[i]])
            p[i]++;
        if(i+p[i]>mx)
        {
            mx=i+p[i];
            id=i;
        }
    }
    /*for(int i=0;i<len;i++)
        cout<<a[i]<<" ";
    cout<<endl;
    for(int i=0;i<len;i++)
        cout<<p[i]<<" ";
    cout<<endl;
    cout<<"len="<<len<<endl;*/
}

ll st[MAX];//以s[i]开头的回文子串数
ll en[MAX];//以s[i]结尾的回文子串数
ll dp1[MAX],dp2[MAX];//差分
ll sum[MAX];//st的后缀和
void solve() //得到st,en数组
{
    memset(dp1,0,sizeof(dp1));
    memset(dp2,0,sizeof(dp2));
    for(int i=2;i<len;i++)
    {
        int l,r;
        l=i-(p[i]-1);r=i;//a数组下标,要映射到s数组
        if(l%2) l/=2;
        else l=l/2-1;
        r=r/2-1;
        if(l<=r)
            dp1[l]++,dp1[r+1]--;//对应st数组

        l=i;r=i+(p[i]-1);
        if(l%2) l/=2;
        else l=l/2-1;
        r=r/2-1;
        if(l<=r)
            dp2[l]++,dp2[r+1]--;//对应en数组
    }
    st[0]=dp1[0];en[0]=dp2[0];
    for(int i=1;i<n;i++)
    {
        st[i]=st[i-1]+dp1[i];
        en[i]=en[i-1]+dp2[i];
    }
    /*for(int i=0;i<n;i++)
        cout<<en[i]<<" ";
    cout<<endl;
    for(int i=0;i<n;i++)
        cout<<st[i]<<" ";
    cout<<endl;*/
}

int main()
{
    while(scanf("%s",s)==1)
    {
        n=strlen(s);
        manacher();
        solve();
        sum[n-1]=st[n-1];//st的后缀和
        for(int i=n-2;i>=0;i--)
            sum[i]=sum[i+1]+st[i];
        ll ans=0;
        for(int i=0;i<n-1;i++)
        {
            ans+=en[i]*sum[i+1];
        }
        printf("%lld\n",ans);
    }
	return 0;
}

另外这道题更普遍的解法是回文树,但是我不会啊55555...回头有时间好好学习一下,再做一下这道题吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>