机器学习性能评估指标---

机器学习的算法主要有分类和回归两种算法,这两种算法有着自己各自的性能评估指标。
回归算法主要性能评估指标有:
平均绝对误差(MAE)、平均平方误差(MSE)
分类算法主要评估指标有:
精确率、召回率、ROC曲线、AUC

分类算法的性能评价指标

1、精确率 召回率
精确率是针对预测结果而言,预测结果中预测为正的中有多少是真正是正的;
召回率是针对原来样本而言,样本中有多少是正的最终也被预测为正;
关于TP、TN、FP、FN的定义:

这里写图片描述

上面式子的计算方法,T和F代表这个判断是对的还是错的(true false),P和N代表这个样本是正的还是负的。
精确率P = TP/(TP+FP); 召回率R = TP/(TP+FN)

2、F1值:
F1 = 2*P*R/(P+R)

主要参考文章
参考文章

阅读更多
个人分类: 机器学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

机器学习性能评估指标---

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭