滑雪
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 80871 | Accepted: 30152 |
Description
Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael想知道载一个区域中最长底滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度减小。在上面的例子中,一条可滑行的滑坡为24-17-16-1。当然25-24-23-...-3-2-1更长。事实上,这是最长的一条。
Input
输入的第一行表示区域的行数R和列数C(1 <= R,C <= 100)。下面是R行,每行有C个整数,代表高度h,0<=h<=10000。
Output
输出最长区域的长度。
Sample Input
5 5 1 2 3 4 5 16 17 18 19 6 15 24 25 20 7 14 23 22 21 8 13 12 11 10 9
Sample Output
25
解题思路:
遍历每一个点,定义一个方向数组,分别表示上下左右走,如果满足后一个值小于前一个就继续以后一个为坐标进行递归,只要比较每个点求出值取最大就是结果,本题需要注意的是如果单纯用递归的话,容易超时,所以要采用递归 + 记忆化搜索,本题也可以采用动态规划来解,下面贴递归 + 记忆化搜索的代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 105;
int map[maxn][maxn];
int dir[4][2] = {{-1,0},{0,-1},{1,0},{0,1}};
int r[maxn][maxn];
int m,n;
int dfs(int x,int y)
{
int i;
if(r[x][y] != -1) //记忆化搜索,避免重复计算
{
return r[x][y];
}
int sum = 1;
for(i=0;i<4;i++)
{
int xx = x + dir[i][0];
int yy = y + dir[i][1];
if(xx < 0 || yy < 0 || xx >= m || yy >= n) //越界
{
continue;
}
if(map[xx][yy] >= map[x][y]) //不满足条件
{
continue;
}
sum = max(sum,dfs(xx,yy)+1); //满足条件就+1
}
r[x][y] = sum; //记忆化搜索,避免重复计算
return sum;
}
int main()
{
int i,j;
//freopen("111","r",stdin);
while(cin>>m>>n)
{
int sum = 0;
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
cin>>map[i][j];
}
}
memset(r,-1,sizeof(r));
for(i=0;i<m;i++)
{
for(j=0;j<n;j++)
{
sum = max(sum,dfs(i,j));
}
}
cout<<sum<<endl;
}
return 0;
}