《访问Mat图像中每个像素的值》)

目录(?)[+]

转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7557063

!!此篇是基于IplImage* (C接口或者说2.1之前版本的接口,新的Mat的访问方式请参考博文:

IplImage是OpenCV中CxCore部分基础的数据结构,用来表示图像,其中Ipl是Intel Image Processing Library的简写。以下是IplImage的结构分析(来自OpenCV中文网站:http://www.opencv.org.cn/index.php/Cxcore%E5%9F%BA%E7%A1%80%E7%BB%93%E6%9E%84#IplImage

[cpp]  view plain copy
  1. typedef struct _IplImage  
  2.     {  
  3.         int  nSize;         /* IplImage大小 */  
  4.         int  ID;            /* 版本 (=0)*/  
  5.         int  nChannels;     /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */  
  6.         int  alphaChannel;  /* 被OpenCV忽略 */  
  7.         int  depth;         /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U, 
  8.                                IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */  
  9.         char colorModel[4]; /* 被OpenCV忽略 */  
  10.         char channelSeq[4]; /* 同上 */  
  11.         int  dataOrder;     /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道. 
  12.                                cvCreateImage只能创建交叉存取图像 */  
  13.         int  origin;        /* 0 - 顶—左结构, 
  14.                                1 - 底—左结构 (Windows bitmaps 风格) */  
  15.         int  align;         /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */  
  16.         int  width;         /* 图像宽像素数 */  
  17.         int  height;        /* 图像高像素数*/  
  18.         struct _IplROI *roi;/* 图像感兴趣区域. 当该值非空只对该区域进行处理 */  
  19.         struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */  
  20.         void  *imageId;     /* 同上*/  
  21.         struct _IplTileInfo *tileInfo; /*同上*/  
  22.         int  imageSize;     /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/  
  23.         char *imageData;  /* 指向排列的图像数据 */  
  24.         int  widthStep;   /* 排列的图像行大小,以字节为单位 */  
  25.         int  BorderMode[4]; /* 边际结束模式, 被OpenCV忽略 */  
  26.         int  BorderConst[4]; /* 同上 */  
  27.         char *imageDataOrigin; /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */  
  28.     }  
  29.     IplImage;  

直接访问:

对我们来说比较重要的两个元素是:char *imageData以及widthStep。imageData存放图像像素数据,而widStep类似CvMat中的step,表示以字节为单位的行数据长度。

一个m*n的单通道字节型图像,其imageData排列如下:


如果我们要遍历图像中的元素,只需:

[cpp]  view plain copy
  1. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);  
  2. uchar* tmp;  
  3. for(int i=0;i<img->height;i++)  
  4.     for(int j=0;j<img->width;j++)  
  5.         *tmp=((uchar *)(img->imageData + i*img->widthStep))[j];  

这种直接访问的方法速度快,但容易出错,我们可以通过定义指针来访问。即:

[cpp]  view plain copy
  1. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);  
  2. ucha* data=(uchar *)img->imageData;  
  3. int step = img->widthStep/sizeof(uchar);  
  4. uchar* tmp;  
  5. for(int i=0;i<img->height;i++)  
  6.     for(int j=0;j<img->width;j++)  
  7.         *tmp=data[i*step+j];  

而多通道(三通道)字节图像中,imageData排列如下:

其中(Bi,Bj)(Gi,Gj)(Ri,Rj)表示图像(i,j)处BGR分量的值。使用指针的遍历方法如下:

[cpp]  view plain copy
  1. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);  
  2. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);  
  3. uchar* data=(uchar *)img->imageData;  
  4. int step = img->widthStep/sizeof(uchar);  
  5. int channels = img->nChannels;  
  6. uchar *b,*g,*r;  
  7. for(int i=0;i<img->height;i++)  
  8.      for(int j=0;j<img->width;j++){  
  9.            *b=data[i*step+j*chanels+0];  
  10.            *g=data[i*step+j*chanels+1];  
  11.            *r=data[i*step+j*chanels+2];  
  12.       }  

*如果要修改某像素值,则直接赋值。

使用cvGet2D()函数访问:

cvGet*D系列函数可以用来返回特定位置的数组元素(一般使用cvGet2D),原型如下:
[cpp]  view plain copy
  1. CvScalar cvGet1D( const CvArr* arr, int idx0 );  
  2. CvScalar cvGet2D( const CvArr* arr, int idx0, int idx1 );  
  3. CvScalar cvGet3D( const CvArr* arr, int idx0, int idx1, int idx2 );  
  4. CvScalar cvGetND( const CvArr* arr, int* idx );  
idx0,idx1,idx2分别用来指示元素数组下标,即cvGet2D返回(idx0,idx1)处元素的值。
因此,单通道图像像素访问方式如下:
[cpp]  view plain copy
  1. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);  
  2. double tmp;  
  3. for(int i=0;i<img->height;i++)  
  4.     for(int j=0;j<img->width;j++)  
  5.         tmp=cvGet2D(img,i,j).val[0];  
多通道字节型/浮点型图像:
[cpp]  view plain copy
  1. IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);  
  2. double tmpb,tmpg,bmpr;  
  3. for(int i=0;i<img->height;i++)  
  4.     for(int j=0;j<img->width;j++){  
  5.         tmpb=cvGet2D(img,i,j).val[0];  
  6.         tmpg=cvGet2D(img,i,j).val[1];  
  7.         tmpr=cvGet2D(img,i,j).val[2];  
  8.     }  
如果是修改元素的值,可用cvSet*D(一般是cvSet2D)函数:
[cpp]  view plain copy
  1. void cvSet1D( CvArr* arr, int idx0, CvScalar value );  
  2. void cvSet2D( CvArr* arr, int idx0, int idx1, CvScalar value );  
  3. void cvSet3D( CvArr* arr, int idx0, int idx1, int idx2, CvScalar value );  
  4. void cvSetND( CvArr* arr, int* idx, CvScalar value );  
这种方法对于任何图像的访问方式是一样的,比较简单,但效率较低,不推荐使用。
### 回答1: 要输出MATLAB数据每个像素,可以使用MATLAB编程语言。首先,需要读取MAT文件并获取图像变量的。然后,根据图像变量的维度,可以使用循环来遍历每个像素并输出其。 假设MAT文件图像变量名为img,并且它是一个二维矩阵。 ``` % 读取MAT文件 load('file.mat'); % 获取图像变量的尺寸 [height, width] = size(img); % 遍历每个像素,并输出其 for i = 1:height for j = 1:width pixelValue = img(i, j); disp(['Pixel at (' num2str(i) ',' num2str(j) ') = ' num2str(pixelValue)]); end end ``` 以上代码假定MAT文件已经加载到MATLAB工作区,并且图像变量名为img。通过使用两个嵌套的循环,代码遍历了图像每个像素,并使用disp函数输出了每个像素。 请注意,以上的代码适用于二维矩阵,如果图像是多维的,需要根据图像的维度进行相应的修改。这个例子仅仅是一个简单的示例来回答问题,实际应用可能需要根据具体需求进行更多的处理。 ### 回答2: 要输出mat数据的每一个像素,首先需要确认mat是一个什么类型的数据结构。在OpenCVmat是一个多维数组,存储像素的类型可以是单通道或多通道的。这里以单通道的情况为例。 在输出像素之前,首先要确定mat的尺寸大小(宽度和高度),以确定需要遍历的像素数。可以通过mat.rows和mat.cols来获取。 然后,可以使用双重循环来遍历mat的每一个像素。外层循环控制行数,内层循环控制列数。 在循环,可以使用mat.at<数据类型>(行索引, 列索引)来获取对应位置的像素。例如,若mat是一个CV_8UC1类型的mat,表示像素范围为0-255的灰度图像,则可以使用mat.at<uchar>(i, j)来获取(i, j)位置的像素。 在循环输出每一个像素,可以使用cout或者其他适合的输出方式,将像素打印出来。 下面是一个简单的示例代码: ```cpp #include <iostream> #include <opencv2/opencv.hpp> int main() { cv::Mat mat = cv::imread("image.jpg", cv::IMREAD_GRAYSCALE); // 读取灰度图像 int rows = mat.rows; int cols = mat.cols; for (int i = 0; i < rows; ++i) { for (int j = 0; j < cols; ++j) { uchar pixel_value = mat.at<uchar>(i, j); std::cout << "Pixel value at (" << i << ", " << j << "): " << static_cast<int>(pixel_value) << std::endl; } } return 0; } ``` 上述代码使用OpenCV库读取一个灰度图像,并输出每一个像素。在实际应用,需要根据具体的需求对代码进行修改和优化。 ### 回答3: 要输出MATLAB的二维矩阵数据mat的每一个像素,首先我们需要将该二维矩阵转化为MATLAB图像矩阵。接下来,我们可以使用MATLAB的循环结构来遍历图像矩阵的每一个像素,并输出其。 具体步骤如下: 1. 首先,将MATLAB的二维矩阵mat转化为图像矩阵,可以使用im2uint8()函数将其转化为8位整型矩阵。 img = im2uint8(mat); 2. 然后,获取图像矩阵的行数和列数,以便遍历每个像素。 [rows, cols] = size(img); 3. 使用两个嵌套的循环结构来遍历图像矩阵的每一个像素,并输出其。 for i = 1:rows for j = 1:cols pixel_value = img(i, j); disp(['Pixel at position (', num2str(i), ',', num2str(j), ') has value: ', num2str(pixel_value)]); end end 通过以上步骤,我们可以逐个输出矩阵mat每个像素。代码,我们使用disp()函数将输出结果显示在命令行窗口,并使用num2str()函数将数转化为字符串以输出。最后的输出结果将包括每个像素的位置和相应的像素。 需要注意的是,上述代码是在MATLAB环境运行的,如果您需要在其他编程环境实现类似的功能,可以根据具体的编程语言语法进行相应的修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值