版权声明:本文为博主原创文章,未经博主允许不得转载。
转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7557063
!!此篇是基于IplImage* (C接口或者说2.1之前版本的接口,新的Mat的访问方式请参考博文:
IplImage是OpenCV中CxCore部分基础的数据结构,用来表示图像,其中Ipl是Intel Image Processing Library的简写。以下是IplImage的结构分析(来自OpenCV中文网站:http://www.opencv.org.cn/index.php/Cxcore%E5%9F%BA%E7%A1%80%E7%BB%93%E6%9E%84#IplImage)
- typedef struct _IplImage
- {
- int nSize; /* IplImage大小 */
- int ID; /* 版本 (=0)*/
- int nChannels; /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */
- int alphaChannel; /* 被OpenCV忽略 */
- int depth; /* 像素的位深度: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,
- IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F 可支持 */
- char colorModel[4]; /* 被OpenCV忽略 */
- char channelSeq[4]; /* 同上 */
- int dataOrder; /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道.
- cvCreateImage只能创建交叉存取图像 */
- int origin; /* 0 - 顶—左结构,
- 1 - 底—左结构 (Windows bitmaps 风格) */
- int align; /* 图像行排列 (4 or 8). OpenCV 忽略它,使用 widthStep 代替 */
- int width; /* 图像宽像素数 */
- int height; /* 图像高像素数*/
- struct _IplROI *roi;/* 图像感兴趣区域. 当该值非空只对该区域进行处理 */
- struct _IplImage *maskROI; /* 在 OpenCV中必须置NULL */
- void *imageId; /* 同上*/
- struct _IplTileInfo *tileInfo; /*同上*/
- int imageSize; /* 图像数据大小(在交叉存取格式下imageSize=image->height*image->widthStep),单位字节*/
- char *imageData; /* 指向排列的图像数据 */
- int widthStep; /* 排列的图像行大小,以字节为单位 */
- int BorderMode[4]; /* 边际结束模式, 被OpenCV忽略 */
- int BorderConst[4]; /* 同上 */
- char *imageDataOrigin; /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */
- }
- IplImage;
直接访问:
对我们来说比较重要的两个元素是:char *imageData以及widthStep。imageData存放图像像素数据,而widStep类似CvMat中的step,表示以字节为单位的行数据长度。
一个m*n的单通道字节型图像,其imageData排列如下:
如果我们要遍历图像中的元素,只需:
- IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
- uchar* tmp;
- for(int i=0;i<img->height;i++)
- for(int j=0;j<img->width;j++)
- *tmp=((uchar *)(img->imageData + i*img->widthStep))[j];
这种直接访问的方法速度快,但容易出错,我们可以通过定义指针来访问。即:
- IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
- ucha* data=(uchar *)img->imageData;
- int step = img->widthStep/sizeof(uchar);
- uchar* tmp;
- for(int i=0;i<img->height;i++)
- for(int j=0;j<img->width;j++)
- *tmp=data[i*step+j];
而多通道(三通道)字节图像中,imageData排列如下:
其中(Bi,Bj)(Gi,Gj)(Ri,Rj)表示图像(i,j)处BGR分量的值。使用指针的遍历方法如下:
- IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
- IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);
- uchar* data=(uchar *)img->imageData;
- int step = img->widthStep/sizeof(uchar);
- int channels = img->nChannels;
- uchar *b,*g,*r;
- for(int i=0;i<img->height;i++)
- for(int j=0;j<img->width;j++){
- *b=data[i*step+j*chanels+0];
- *g=data[i*step+j*chanels+1];
- *r=data[i*step+j*chanels+2];
- }
*如果要修改某像素值,则直接赋值。
使用cvGet2D()函数访问:
cvGet*D系列函数可以用来返回特定位置的数组元素(一般使用cvGet2D),原型如下:
- CvScalar cvGet1D( const CvArr* arr, int idx0 );
- CvScalar cvGet2D( const CvArr* arr, int idx0, int idx1 );
- CvScalar cvGet3D( const CvArr* arr, int idx0, int idx1, int idx2 );
- CvScalar cvGetND( const CvArr* arr, int* idx );
因此,单通道图像像素访问方式如下:
- IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);
- double tmp;
- for(int i=0;i<img->height;i++)
- for(int j=0;j<img->width;j++)
- tmp=cvGet2D(img,i,j).val[0];
- IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);
- double tmpb,tmpg,bmpr;
- for(int i=0;i<img->height;i++)
- for(int j=0;j<img->width;j++){
- tmpb=cvGet2D(img,i,j).val[0];
- tmpg=cvGet2D(img,i,j).val[1];
- tmpr=cvGet2D(img,i,j).val[2];
- }
如果是修改元素的值,可用cvSet*D(一般是cvSet2D)函数:
- void cvSet1D( CvArr* arr, int idx0, CvScalar value );
- void cvSet2D( CvArr* arr, int idx0, int idx1, CvScalar value );
- void cvSet3D( CvArr* arr, int idx0, int idx1, int idx2, CvScalar value );
- void cvSetND( CvArr* arr, int* idx, CvScalar value );