一、业界难题
主要是伪纹理、偏色和轻量化等。
二、学术界分享
1. 多相机和多曝的AI图像增强研究
多相机、多传感器增强
采用自监督的方式
长曝光和短曝光可以互相补偿,短曝噪声可能比较多,长曝光可能运动会有blur。
静止的时候可以用这个公式做,但是运动的时候呢?
底层视觉任务有一定的监督信息,但是不完全,不太能用全监督。
2. 面向图像视频复原的判别性自注意力机制方法
图像梯度衡量了两个相邻像素之间的关系,但是考虑信息比较小。
FOV
卷积作为局部特征提取的工具,平移不变性和局部感受野。
Q,K,V刻画非局部的信息。
自注意力机制其实和05年的non-local means一脉相承,就是衡量某个patch和其他patch的相关关系。
自注意力机制就是深度特征空间里的non-local means。
低通滤波
自注意力是一个特殊的低通滤波器。
问题出在归一化方式?
引入top K的机制。替换softmax为ReLU。
融合了标准自注意力机制和稀疏自注意力机制。
简单地来说,就是使用有用的token信息,而去掉无用的token信息。
3. AI-ISP
通过重参数化来更好拟合高频信息?
4. 基于RAW数据的图像增强和应用
8位sRGB数据
例如极暗光下偏紫。
人类对绿色的感知会比较强RGGB。
5. 面向移动中断的极暗光图像增强