NEURAL NETWORKS

神经网络可以用torch.nn来构建。

现在您已经了解了autograd, nn依赖于autograd来定义模型并对它们进行区分。一个nn.Module包含层和返回output的方法forward(input)。

例如,看看这个对数字图像进行分类的网络:

convnet

它是一个简单的前馈网络。它接受输入,一个接一个地通过几个层为其提供数据,最后给出输出。

一个典型的神经网络训练过程如下:

  • 定义一些参数(或权重)可学的神经网络
  • 遍历输入数据集
  • 通过网络处理输入
  • 计算损失(输出距离正确有多远)
  • 传播梯度回网络的参数
  • 更新网络的权重,通常使用一个简单的更新规则:weight = weight - learning_rate * gradient

Define the network

让我们定义这个网络

import torch
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        # 1 input image channel, 6 output channels, 5x5 square convolution
        # kernel
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
        # an affine operation: y = Wx + b
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # Max pooling over a (2, 2) window
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        # If the size is a square you can only specify a single number
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features


net = Net()
print(net)

Out:

Net(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)

您只需定义forward函数,然后使用autograd自动为您定义backward函数(其中计算梯度)。你可以在forward函数中使用任何Tensor运算。

模型的可学习参数由net.parameters()返回

params = list(net.parameters())
print(len(params))
print(params[0].size())  # conv1's .weight

Out:

10
torch.Size([6, 1, 5, 5])

让我们尝试一个随机的32x32输入。注意:此网络(LeNet)的预期输入大小为32x32。要在MNIST数据集上使用此网络,请将数据集中的图像大小调整为32x32。

input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)

Out:

tensor([[ 0.0503,  0.0003,  0.0674, -0.1313,  0.1299, -0.1419, -0.0999, -0.0190,
         -0.1661,  0.1051]], grad_fn=<AddmmBackward>)

所有参数和随机梯度的反向传播的梯度缓冲器为零:

net.zero_grad()
out.backward(torch.randn(1, 10))

注意

torch.nn只支持小批量。整个torch.nn包只支持小批量样本的输入,而不是单个样本。

例如,nn.Conv2d将接收nSamples x nChannels x Height x Width的4D张量。

如果只有一个示例,只需使用input.unsqueeze(0)添加一个伪批处理维度。

在继续之前,让我们先回顾一下到目前为止您已经看到的所有类。

扼要重述

  • torch.Tensor——一个多维数组,支持像backward()这样的autograd操作。也包含梯度w.r.t张量。
  • nn.Module——神经网络模块。方便的方式封装参数,与帮助移动到GPU,导出,加载等。
  • nn.Parameter——一种张量,当作为一个属性分配给一个模块时,它自动注册为一个参数。
  • autograd.Function——实现autograd操作的正向和反向定义。每个Tensor运算至少创建一个Function节点,该节点连接到创建张量并对其历史进行编码的函数。

至此,我们讨论了:

  • 定义一个神经网络
  • 处理输入并向后调用

还剩下:

  • 计算损耗
  • 更新网络权值

Loss Function

损失函数接受(输出、目标)输入对,并计算一个值,该值估计输出与目标的距离。

nn包下有几种不同的损失函数。一个简单的损失是:nn.MSELoss计算输入和目标之间的均方误差。

例如:

output = net(input)
target = torch.randn(10)  # a dummy target, for example
target = target.view(1, -1)  # make it the same shape as output
criterion = nn.MSELoss()

loss = criterion(output, target)
print(loss)

Out:

tensor(0.9914, grad_fn=<MseLossBackward>)

现在,如果您使用它的.grad_fn属性沿着loss的反向进行跟踪,您将看到一个类似于这样的计算图:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
      -> view -> linear -> relu -> linear -> relu -> linear
      -> MSELoss
      -> loss

因此,当我们调用loss.backward()时,整个图形被区分为w.r.t. 损失,图中所有具有requires_grad = True的张量将使用渐变累积其.grad 张量。

为了说明这一点,让我们后退几步:

print(loss.grad_fn)  # MSELoss
print(loss.grad_fn.next_functions[0][0])  # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLU

Out:

<MseLossBackward object at 0x7f9eb40c88d0>
<AddmmBackward object at 0x7f9eb40c85f8>
<AccumulateGrad object at 0x7f9eb40c85f8>

Backprop

要反向传播误差,我们所要做的就是loss.backward()。不过,您需要清除现有的梯度,否则梯度将累积为现有梯度。

现在我们将调用loss. reverse(),并查看在反向之前和之后conv1的偏向梯度。

net.zero_grad()     # zeroes the gradient buffers of all parameters

print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)

loss.backward()

print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)

Out:

conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([-0.0205,  0.0088,  0.0135,  0.0123,  0.0098, -0.0036])

现在,我们已经学习了如何使用损失函数。

Update the weights

在实践中使用的最简单的更新规则是随机梯度下降(SGD)

weight = weight - learning_rate * gradient

我们可以使用简单的python代码实现这一点

learning_rate = 0.01
for f in net.parameters():
    f.data.sub_(f.grad.data * learning_rate)

然而,当您使用神经网络时,您希望使用各种不同的更新规则,如SGD、Nesterov-SGD、Adam、RMSProp等。为此,我们制作了一个小包装:torch.optim实现了所有这些方法。使用它非常简单:

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)

# in your training loop:
optimizer.zero_grad()   # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step()    # Does the update

观察如何使用optimizer.zero_grad()手动将梯度缓冲区设置为零。这是因为梯度是累积的,正如在Backprop部分所解释的那样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值