LangChain学习文档
概述
该笔记本展示了使用通用转换链
。
例如,我们将创建一个转换函数,它接受超长文本,将文本过滤为仅前 3 段,然后将其传递到 LLMChain
中以总结这些内容。
from langchain.chains import TransformChain, LLMChain, SimpleSequentialChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
# 模拟超长文本
with open("../../state_of_the_union.txt") as f:
state_of_the_union = f.read()
# 定义转换方法,入参和出参都是字典,取前三段
def transform_func(inputs: dict) -> dict:
text = inputs["text"]
shortened_text = "\n\n".join(text.split("\n\n")[:3])
return {"output_text": shortened_text}
# 转换链:输入变量:text,输出变量:output_text
transform_chain = TransformChain(
input_variables=["text"], output_variables=["output_text"], transform=transform_func
)
# prompt模板描述
template = """Summarize this text:
{output_text}
Summary:"""
# prompt模板
prompt = PromptTemplate(input_variables=["output_text"], template=template)
# llm链
llm_chain = LLMChain(llm=OpenAI(), prompt=prompt)
# 使用顺序链
sequential_chain = SimpleSequentialChain(chains=[transform_chain, llm_chain])
# 开始执行
sequential_chain.run(state_of_the_union)
# 结果
"""
' The speaker addresses the nation, noting that while last year they were kept apart due to COVID-19, this year they are together again.
They are reminded that regardless of their political affiliations, they are all Americans.'
"""
总结
本篇内容思路:将超长文本截取少部分,然后传入大模型,进行总结。
- 定义转换函数 – 如:截取超长文本的前三句话。
- 定义
转换chain
、llmchain
,组成一个顺序链。 - 执行。
参考地址:
https://python.langchain.com/docs/modules/chains/foundational/transformation