Windows下使用anaconda安装Labelme并标注自己的数据集

一、安装环境:windows10,anaconda2,python2.7

二、安装过程:

      1、管理员身份打开 anaconda prompt

      2、输入命令:conda create --name=labelme python=2.7

      3、输入命令:activate labelme

      4、输入命令:conda install pyqt

      5、输入命令:pip install labelme(由于网络原因或者库的地址需要翻墙,经常运行一半出现错误,不要气馁,多执行几次)

      6、输入命令:labelme   即可打开labelme。如下:

安装完成后,需要使用再次启动labelme。则需要重新打开anaconda prompt,输入activate labelme,进入labelme环境。再输 入命令: labelme 即可

三、用labelme标注完图片后,会生成json文件

       标注图形(原图)

点击保存后,会生成xx.json文件。

1、如果将单个json文件生成数据集,运行命令: \anaconda安装目录\envs\labelme\Scripts\label_json_to_dataset.exe    \保存xx.json文件地址\ xx.json 会成生成五个文件 img.png,info.yaml,label.png,label_names,label_viz.png。其中label.png即是我们要的label_data了。

其中info.yaml的文件具体内容为:

label_names:
- _background_
- box1
- box2
- box3

label_names.txt的文件具体内容为:

_background_
box1
box2
box3

 2、批量将json文件生成数据集。编写脚本如下:               

import os
path = r'D:\code\Mask\test_labelme\json'
json_file = os.listdir(path)
for file in json_file:
    os.system("python C:\Anaconda2\envs\labelme\Scripts\labelme_json_to_dataset.exe %s"%(path + "\\" + file))

### LabelMe 数据标注工具使用教程 #### 安装准备 为了顺利使用LabelMe数据标注工具,建议先按照特定的方法完成安装。对于Windows系统的用户来说,推荐通过Anaconda来管理Python环境以及依赖包的安装[^1]。 #### 启动程序 一旦成功安装完毕之后,可以通过命令提示符或者Anaconda Prompt输入`labelme`启动该软件。如果一切正常配置无误的话,浏览器会自动打开一个新的标签页加载LabelMe界面;如果没有自启,则可以手动访问本地服务器地址(通常是http://127.0.0.1:5000/)。 #### 创建新项目 首次运行时,点击界面上方菜单栏里的“Create Project”,然后指定保存路径和名称即可创建新的标注工程。这一步骤非常重要,因为所有的图片都将被导入到这个新建好的工程项目当中去进行后续操作。 #### 导入待处理图像 接着就是把想要用来做标记工作的原始素材——即那些未经任何编辑的照片或截图等放入刚才建立起来的那个文件夹里边儿。当这些资源准备好以后,刷新网页就能看到它们出现在列表之中等待进一步的操作了。 #### 开始绘制边界框或其他形状 选中某一张具体的图样后就可以着手开展实际的任务啦!利用左侧工具箱提供的选项能够轻松画出矩形、圆形乃至自由曲线等多种类型的区域轮廓线,为其赋予相应的类别标签以便区分不同对象之间的差异性特征。 #### 修改已有的标注信息 如果不小心弄错了某些地方也不必担心,只要重新选取那个部分再调整就好。另外值得注意的是,在一些特殊情况下可能还需要对`.json`格式存储下来的元数据记录作出适当更改以确保准确性。比如针对Windows环境下可能出现的文件命名冲突问题就需要改动源码中的相应位置才能彻底解决这个问题[^2]。 #### 保存成果导出JSON文件 最后别忘了及时存盘哦~每次做完一批工作记得要点击右上角按钮将当前进度另存为JSON文档形式固定下来。这样不仅方便日后查阅回顾整个过程而且也为机器学习算法提供了结构化的训练样本集作为基础支持材料。 ```python import json data = { "version": "3.16.7", "flags": {}, ... } with open('annotations.json', 'w') as f: json.dump(data, f) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值