labelme 标注岩石薄片数据集流程

Labelme 安装 - windows

1.下载labelme

下载labelme(github.com)
下载压缩包,下载完成后解压至自定义的目录
在这里插入图片描述

2. 安装anaconda

3.创建labelme环境

打开anaconda,在控制台分别输入以下三条命令

conda create -n labelme python=3.8.0

conda activate labelme

pip install opencv-python==4.2.0.34

在这里插入图片描述

使用labelme标注

1.打开anaconda环境

在这里插入图片描述

2.打开labelme工具

输入下列两条命令,打开labelme工具
(前提是本机anaconda中已经安装了labelme工具)

conda activate labelme
labelme

输入完成后,此窗口不可关闭
在这里插入图片描述

3.打开数据集文件夹

注意:打开一个文件夹后,要将本文件夹中的所有图片全部标注完成后,再可以关闭labelme图形界面(防止文件混乱)
在这里插入图片描述

打开完成后界面如下:
在这里插入图片描述

4.开始标注

4.1 点击编辑按钮,选择创建标注的类型
这里选择create-AI-Polygon,采用ai辅助标注

注意:ai辅助标注速度块,但是精度或许不够,要注意附加手动调整来确保标注具有较高精度
在这里插入图片描述

4.2 在区域中间打上关键点来调整标注内容
在这里插入图片描述
4.3 调整完成后,左键双击完成本区域标注
完成本区域标注,,然后键入岩石类型,这里以test为例
在这里插入图片描述
4.4 键入标签后,右侧会显示标签列表
在这里插入图片描述
4.5 撤销标注点

若标注点打错,则可以选择单击右键,选择撤销最后的控制点,来撤销上一个操作

4.6 若ai辅助标注不合理,也可以选择"创建多边形"来进行数据标注
在这里插入图片描述

4.7 注意

1.若ai标注区域不合理,则需要人工手动调整,确保标注的准确性

2.一定要确保标注内容覆盖全图,不可以有漏标区域

5. 标注完成

本图片标注完成后,ctrl+s进行保存,之后进行下一幅图片的标注,
直到本文件夹的图片全部标注完成

图片被标注后,文件前会存在对勾。图片全部标注完成后,关闭labelme图形界面。
在这里插入图片描述

6. 修改labels.txt文件

在标注过程中,若是新加入的标签,则应该将其添加到labels.txt文件中
该txt文件为手动创建,文件存放在与标注图像文件夹同级的目录下,详见7.1
在这里插入图片描述

7. 将标注结果可视化

标注完成后,可以将标注结果的json文件批量转换为图像,用来作为图像标签
注意:以下命令需要根据自己的实际文件路径进行修改

7.1 首先,将python代码文件、标签名称与标注的图像文件夹放入同一级目录

在这里插入图片描述

7.2 在命令行窗口进入到标注文件夹下

进入文件夹后执行转换

python labelme2voc.py images_name target_name --labels labels.txt

其中 :
images_name 是标注图片路径,即原始图片与json所在文件夹
target_name 是要将结果保存的文件夹的名称
labels.txt 是存储标签名称

此处的命令需要根据自己实际的文件路径进行修
比如我的命令是

cd D:\项目\研究生资料文件\机器学习资料\机器学习数据集\南京大学岩石薄片数据集
D:
python labelme2voc.py 沉积岩 target_name --labels labels.txt

在这里插入图片描述

8. 完成json转图片

注意,下面这个例子中,标签并没有全部覆盖,说明这是一个不好的标签。

语义分割标签文件:
在这里插入图片描述
标签与原始图像展示

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值