labelme 标注岩石薄片数据集流程

部署运行你感兴趣的模型镜像

Labelme 安装 - windows

1.下载labelme

下载labelme(github.com)
下载压缩包,下载完成后解压至自定义的目录
在这里插入图片描述

2. 安装anaconda

3.创建labelme环境

打开anaconda,在控制台分别输入以下三条命令

conda create -n labelme python=3.8.0

conda activate labelme

pip install opencv-python==4.2.0.34

在这里插入图片描述

使用labelme标注

1.打开anaconda环境

在这里插入图片描述

2.打开labelme工具

输入下列两条命令,打开labelme工具
(前提是本机anaconda中已经安装了labelme工具)

conda activate labelme
labelme

输入完成后,此窗口不可关闭
在这里插入图片描述

3.打开数据集文件夹

注意:打开一个文件夹后,要将本文件夹中的所有图片全部标注完成后,再可以关闭labelme图形界面(防止文件混乱)
在这里插入图片描述

打开完成后界面如下:
在这里插入图片描述

4.开始标注

4.1 点击编辑按钮,选择创建标注的类型
这里选择create-AI-Polygon,采用ai辅助标注

注意:ai辅助标注速度块,但是精度或许不够,要注意附加手动调整来确保标注具有较高精度
在这里插入图片描述

4.2 在区域中间打上关键点来调整标注内容
在这里插入图片描述
4.3 调整完成后,左键双击完成本区域标注
完成本区域标注,,然后键入岩石类型,这里以test为例
在这里插入图片描述
4.4 键入标签后,右侧会显示标签列表
在这里插入图片描述
4.5 撤销标注点

若标注点打错,则可以选择单击右键,选择撤销最后的控制点,来撤销上一个操作

4.6 若ai辅助标注不合理,也可以选择"创建多边形"来进行数据标注
在这里插入图片描述

4.7 注意

1.若ai标注区域不合理,则需要人工手动调整,确保标注的准确性

2.一定要确保标注内容覆盖全图,不可以有漏标区域

5. 标注完成

本图片标注完成后,ctrl+s进行保存,之后进行下一幅图片的标注,
直到本文件夹的图片全部标注完成

图片被标注后,文件前会存在对勾。图片全部标注完成后,关闭labelme图形界面。
在这里插入图片描述

6. 修改labels.txt文件

在标注过程中,若是新加入的标签,则应该将其添加到labels.txt文件中
该txt文件为手动创建,文件存放在与标注图像文件夹同级的目录下,详见7.1
在这里插入图片描述

7. 将标注结果可视化

标注完成后,可以将标注结果的json文件批量转换为图像,用来作为图像标签
注意:以下命令需要根据自己的实际文件路径进行修改

7.1 首先,将python代码文件、标签名称与标注的图像文件夹放入同一级目录

在这里插入图片描述

7.2 在命令行窗口进入到标注文件夹下

进入文件夹后执行转换

python labelme2voc.py images_name target_name --labels labels.txt

其中 :
images_name 是标注图片路径,即原始图片与json所在文件夹
target_name 是要将结果保存的文件夹的名称
labels.txt 是存储标签名称

此处的命令需要根据自己实际的文件路径进行修
比如我的命令是

cd D:\项目\研究生资料文件\机器学习资料\机器学习数据集\南京大学岩石薄片数据集
D:
python labelme2voc.py 沉积岩 target_name --labels labels.txt

在这里插入图片描述

8. 完成json转图片

注意,下面这个例子中,标签并没有全部覆盖,说明这是一个不好的标签。

语义分割标签文件:
在这里插入图片描述
标签与原始图像展示
在这里插入图片描述

9. labelme2voc.py代码

#!/usr/bin/env python

from __future__ import print_function

import argparse
import glob
import os
import os.path as osp
import sys

import imgviz
import numpy as np

import labelme


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.ArgumentDefaultsHelpFormatter
    )
    parser.add_argument("input_dir",default='./input_imgAndjson', help="Input annotated directory")
    parser.add_argument("output_dir", default='./output_img',help="Output dataset directory")
    parser.add_argument(
        "--labels",default='./labels.txt', help="Labels file or comma separated text", required=True
    )
    parser.add_argument(
        "--noobject", help="Flag not to generate object label", action="store_true"
    )
    parser.add_argument(
        "--nonpy", help="Flag not to generate .npy files", action="store_true"
    )
    parser.add_argument(
        "--noviz", help="Flag to disable visualization", action="store_true"
    )
    args = parser.parse_args()

    if osp.exists(args.output_dir):
        print("Output directory already exists:", args.output_dir)
        sys.exit(1)
    os.makedirs(args.output_dir)
    os.makedirs(osp.join(args.output_dir, "JPEGImages"))
    os.makedirs(osp.join(args.output_dir, "SegmentationClass"))
    if not args.nonpy:
        os.makedirs(osp.join(args.output_dir, "SegmentationClassNpy"))
    if not args.noviz:
        os.makedirs(osp.join(args.output_dir, "SegmentationClassVisualization"))
    if not args.noobject:
        os.makedirs(osp.join(args.output_dir, "SegmentationObject"))
        if not args.nonpy:
            os.makedirs(osp.join(args.output_dir, "SegmentationObjectNpy"))
        if not args.noviz:
            os.makedirs(osp.join(args.output_dir, "SegmentationObjectVisualization"))
    print("Creating dataset:", args.output_dir)

    if osp.exists(args.labels):
        with open(args.labels) as f:
            labels = [label.strip() for label in f if label]
    else:
        labels = [label.strip() for label in args.labels.split(",")]

    class_names = []
    class_name_to_id = {}
    for i, label in enumerate(labels):
        class_id = i - 1  # starts with -1
        class_name = label.strip()
        class_name_to_id[class_name] = class_id
        if class_id == -1:
            assert class_name == "__ignore__"
            continue
        elif class_id == 0:
            assert class_name == "_background_"
        class_names.append(class_name)
    class_names = tuple(class_names)
    print("class_names:", class_names)
    out_class_names_file = osp.join(args.output_dir, "class_names.txt")
    with open(out_class_names_file, "w") as f:
        f.writelines("\n".join(class_names))
    print("Saved class_names:", out_class_names_file)

    for filename in sorted(glob.glob(osp.join(args.input_dir, "*.json"))):
        print("Generating dataset from:", filename)

        label_file = labelme.LabelFile(filename=filename)

        base = osp.splitext(osp.basename(filename))[0]
        out_img_file = osp.join(args.output_dir, "JPEGImages", base + ".jpg")
        out_clsp_file = osp.join(args.output_dir, "SegmentationClass", base + ".png")
        if not args.nonpy:
            out_cls_file = osp.join(
                args.output_dir, "SegmentationClassNpy", base + ".npy"
            )
        if not args.noviz:
            out_clsv_file = osp.join(
                args.output_dir,
                "SegmentationClassVisualization",
                base + ".jpg",
            )
        if not args.noobject:
            out_insp_file = osp.join(
                args.output_dir, "SegmentationObject", base + ".png"
            )
            if not args.nonpy:
                out_ins_file = osp.join(
                    args.output_dir, "SegmentationObjectNpy", base + ".npy"
                )
            if not args.noviz:
                out_insv_file = osp.join(
                    args.output_dir,
                    "SegmentationObjectVisualization",
                    base + ".jpg",
                )

        img = labelme.utils.img_data_to_arr(label_file.imageData)
        imgviz.io.imsave(out_img_file, img)

        cls, ins = labelme.utils.shapes_to_label(
            img_shape=img.shape,
            shapes=label_file.shapes,
            label_name_to_value=class_name_to_id,
        )
        ins[cls == -1] = 0  # ignore it.

        # class label
        labelme.utils.lblsave(out_clsp_file, cls)
        if not args.nonpy:
            np.save(out_cls_file, cls)
        if not args.noviz:
            clsv = imgviz.label2rgb(
                cls,
                imgviz.rgb2gray(img),
                label_names=class_names,
                font_size=15,
                loc="rb",
            )
            imgviz.io.imsave(out_clsv_file, clsv)

        if not args.noobject:
            # instance label
            labelme.utils.lblsave(out_insp_file, ins)
            if not args.nonpy:
                np.save(out_ins_file, ins)
            if not args.noviz:
                instance_ids = np.unique(ins)
                instance_names = [str(i) for i in range(max(instance_ids) + 1)]
                insv = imgviz.label2rgb(
                    ins,
                    imgviz.rgb2gray(img),
                    label_names=instance_names,
                    font_size=15,
                    loc="rb",
                )
                imgviz.io.imsave(out_insv_file, insv)


if __name__ == "__main__":
    main()

您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值