详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

本文介绍了最大似然估计(MLE)和最大后验概率估计(MAP)这两种参数估计方法,阐述了概率与统计的区别,并通过贝叶斯公式解释了两者之间的联系。MLE是仅考虑观测数据来估计参数,而MAP则引入了先验知识,通过贝叶斯公式综合数据和先验信息进行估计。理解这两种方法有助于在实际问题中选择合适的参数估计策略。
摘要由CSDN通过智能技术生成

声明:本文为原创文章,发表于nebulaf91的csdn博客。欢迎转载,但请务必保留本信息,注明文章出处。
本文作者: nebulaf91
本文原始地址:http://blog.csdn.net/u011508640/article/details/72815981


 

最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们。下文将详细说明MLE和MAP的思路与区别。

但别急,我们先从概率和统计的区别讲起。

概率和统计是一个东西吗?

概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反。

概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方差,协方差等等)。 举个例子,我想研究怎么养猪(模型是猪),我选好了想养的品种、喂养方式、猪棚的设计等等(选择参数),我想知道我养出来的猪大概能有多肥,肉质怎么样(预测结果)。

统计研究的问题则相反。统计是,有一堆数据,要利用这堆数据去预测模型和参数。仍以猪为例。现在我买到了一堆肉,通过观察和判断,我确定这是猪肉(这就确定了模型。在实际研究中,也是通过观察数据推测模型是/像高斯分布的、指数分布的、拉普拉斯分布的等等),然后,可以进一步研究,判定这猪的品种、这是圈养猪还是跑山猪还是网易猪,等等(推测模型参数)。

一句话总结:概率是已知模型和参数,推数据。统计是已知数据,推模型和参数。

显然,本文解释的MLE和MAP都是统计领域的问题。它们都是用来推测参数的方法。为什么会存在着两种不同方法呢? 这需要理解贝叶斯思想。我们来看看贝叶斯公式。

贝叶斯公式到底在说什么?

学习机器学习和模式识别的人一定都听过贝叶斯公式(Bayes’ Theorem):

likeli

回顾一下前面的例子,就能理解为什么要求  theta自己要最大了。

ptheta

map1

likeli2

map2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值