【Numpy】numpy.isfinite用法及代码示例

用法:

numpy.isfinite(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True [, signature, extobj ]) = <ufunc 'isfinite'>

逐元素测试有限性(不是无穷大,也不是非数字)。

结果以布尔数组的形式返回。

参数

x: array_like

输入值。

out ndarray,None,或 ndarray 和 None 的元组,可选

存储结果的位置。如果提供,它必须具有输入广播到的形状。如果未提供或 None,则返回一个新分配的数组。元组(只能作为关键字参数)的长度必须等于输出的数量。

where 数组,可选

此条件通过输入广播。在条件为 True 的位置,out 数组将设置为 ufunc 结果。在其他地方,out 数组将保留其原始值。请注意,如果通过默认 out=None 创建未初始化的输出数组,则其中条件为 False 的位置将保持未初始化。

**kwargs

对于其他仅关键字参数,请参阅 ufunc 文档。

返回

y ndarray,布尔

True 其中 x 不是正无穷大、负无穷大或 NaN;否则为假。如果 x 是标量,则这是一个标量。

注意

不是数字,正无穷大和负无穷大被认为是非有限的。

NumPy 使用 IEEE 二进制浮点算术标准 (IEEE 754)。这意味着 Not a Number 不等于无穷大。此外,正无穷大不等于负无穷大。但无穷大等价于正无穷大。如果在 x 是标量输入时也提供了第二个参数,或者如果第一个和第二个参数具有不同的形状,则会导致错误。

例子

>>> np.isfinite(1)
True
>>> np.isfinite(0)
True
>>> np.isfinite(np.nan)
False
>>> np.isfinite(np.inf)
False
>>> np.isfinite(np.NINF)
False
>>> np.isfinite([np.log(-1.),1.,np.log(0)])
array([False,  True, False])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
>>> np.isfinite(x, y)
array([0, 1, 0])
>>> y
array([0, 1, 0])
<think>嗯,用户想优化Python中基于轨迹计算曲率成本的函数实现,特别是用numpy的gradient函数来处理。首先,我需要回忆一下曲率的数学定义。曲率通常用公式$\kappa = \frac{|x'y'' - y'x''|}{(x'^2 + y'^2)^{3/2}}$来计算,对吧?这个公式需要轨迹的一阶和二阶导数,所以用户可能需要用numpy.gradient来求导。 接下来,我得考虑用户当前的实现可能存在什么问题。比如,直接使用numpy.gradient可能会引入噪声,特别是在轨迹数据不够平滑的情况下。噪声会导致二阶导数不准确,从而影响曲率的计算。这时候可能需要数据平滑处理,比如使用高斯滤波或者Savitzky-Golay滤波器来预处理轨迹数据,减少高频噪声。 另外,用户可能没有处理时间参数的问题。如果轨迹数据的时间间隔不均匀,直接用np.gradient计算的导数会有误差。所以需要先检查时间向量是否是等间隔的,或者进行插值处理,确保时间间隔均匀。 然后,数值稳定性也是一个关键点。在计算分母$(x'^2 + y'^2)^{3/2}$时,如果速度很小,可能会导致除以零或者非常大的数值,这时候可以加上一个小的epsilon,比如1e-8,来避免这种情况。 向量化运算方面,用户可能用了循环来计算每个点的曲率,这样效率不高。应该利用numpy的向量操作,一次性计算所有点的导数,再代入曲率公式,这样速度会快很多。 可视化调试也很重要,用户可能需要绘制原始轨迹、导数以及曲率的曲线,观察哪里出现了异常值,从而调整参数或者处理方法。 还有,可以考虑使用更精确的数值微分方法,比如中心差分法,或者更高阶的方法,比如五次样条插值,来提高导数的准确性。但要注意计算复杂度。 最后,可能需要将曲率成本函数与其他优化目标结合起来,比如加速度、加加速度等,使用优化库如scipy.optimize进行多目标优化,确保整体舒适性。 总结一下,改进步骤可能包括:数据平滑、处理时间参数、数值稳定性处理、向量化计算、可视化调试、高阶微分方法以及多目标优化。需要一步步排查当前实现的瓶颈,针对性地优化。</think>### 改进曲率舒适性代价函数实现的步骤 #### 1. **数学定义与基础实现** 曲率计算公式为: $$ \kappa = \frac{|x'\cdot y'' - y'\cdot x''|}{(x'^2 + y'^2)^{3/2}} $$ 其中$x'$和$y'$为轨迹坐标的一阶导数,$x''$和$y''$为二阶导数。使用`numpy.gradient`计算导数时需注意时间参数。 基础实现示例: ```python import numpy as np def curvature_cost(trajectory, t): dx_dt = np.gradient(trajectory[:, 0], t) dy_dt = np.gradient(trajectory[:, 1], t) d2x_dt2 = np.gradient(dx_dt, t) d2y_dt2 = np.gradient(dy_dt, t) numerator = np.abs(dx_dt * d2y_dt2 - dy_dt * d2x_dt2) denominator = (dx_dt**2 + dy_dt**2)**1.5 + 1e-8 # 避免除以零 curvature = numerator / denominator return np.mean(curvature**2) # 平方惩罚高曲率 ``` #### 2. **优化方向与改进方法** - **数据平滑** 使用高斯滤波或Savitzky-Golay滤波器预处理轨迹数据,减少噪声对导数的影响: ```python from scipy.signal import savgol_filter smoothed_x = savgol_filter(trajectory[:, 0], window_length=5, polyorder=3) smoothed_y = savgol_filter(trajectory[:, 1], window_length=5, polyorder=3) ``` - **时间参数处理** 若时间间隔不均匀,需先插值为均匀时间序列: ```python from scipy.interpolate import interp1d t_original = np.linspace(0, 1, len(trajectory)) f = interp1d(t_original, trajectory, axis=0, kind='cubic') t_uniform = np.linspace(0, 1, 100) trajectory_smooth = f(t_uniform) ``` - **数值稳定性优化** 增加微小量$\epsilon$防止除零错误,限制曲率最大值: ```python denominator = (dx_dt**2 + dy_dt**2)**1.5 + 1e-8 curvature = np.clip(numerator / denominator, 0, 1e3) # 限制异常值 ``` - **向量化与加速** 避免循环,利用NumPy广播机制一次性计算所有点[^3]。 #### 3. **验证与调试** 通过可视化对比原始轨迹与曲率分布: ```python import matplotlib.pyplot as plt plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot(trajectory[:, 0], trajectory[:, 1], 'b-', label='轨迹') plt.subplot(1, 2, 2) plt.plot(curvature, 'r-', label='曲率') plt.show() ``` #### 4. **高阶优化方法** - **使用五次样条插值** 通过`scipy.interpolate.make_interp_spline`生成平滑导数。 - **结合加速度约束** 将曲率成本与加速度惩罚结合,例如: $$ J = \lambda_1 \cdot \text{curvature\_cost} + \lambda_2 \cdot \sum \ddot{x}^2 + \ddot{y}^2 $$ --- ### 相关问题 1. 如何选择Savitzky-Golay滤波器的窗口长度和多项式阶数? 2. 曲率舒适性优化在自动驾驶轨迹规划中的应用场景? 3. 如何处理非均匀采样轨迹的曲率计算问题?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值