快速矩阵幂HDU3117

题意:求斐波那契数,如果位数不超过8位就直接输出。
如果超过8位,就输出前四位+“...”+后四位。


分析:
打表发现前40项不超过8位。所以前40个直接输出。


最后超过8位的斐波那契数。
对于后4位用快速矩阵幂求出。
对于前4位,利用公式求出。
由f[n] = 1/sqrt(5)*(((1+sqrt(5))/2)^n-((1-sqrt(5))/2)^n)可知,
当n比较大时,(1-sqrt(5))/2)^n会变得很小,以至于它不会出现在前4位。
所以我们只需要计算1/sqrt(5)*( (1+sqrt(5))/2)^n ).假设等于t*10^k
利用对数进行求。即是先进行对数,
变成log10( 1/sqrt(5) )+n*log( ( 1+sqrt(5) )/2 ) .取掉整数,
也就是求留下,因为log10(t)<1,然后将其复原,即是pow(10.0,t)。

然后不断乘上10,直到大于等于1000,就是前4位了。


/*//
HDU 3117 快速矩阵幂
//*/
#include <cstdio>
#include <cstring>
#include <cmath>

int n,mod=10000;
const double fib=(1+sqrt(5.0))/2.0;
struct Matrix
{
    int m[2][2];
	void clear()
	{
		memset(m,0,sizeof(m));
	}
}E, Z;

Matrix Mut(Matrix A, Matrix B)
{
    Matrix ans;
    for (int i = 0; i<2; i++)
        for (int j = 0; j<2; j++)
        {
            ans.m[i][j] = 0;
            for (int k = 0; k<2; k++)
            {
                ans.m[i][j] += ((A.m[i][k])*(B.m[k][j]));
                ans.m[i][j]%=mod;
            }
        }
    return ans;
}
Matrix Pow(Matrix A, int b)
{
    Matrix t = A, ans = E;
    while (b)
    {
        if (b % 2) 
			ans = Mut(ans, t);
        b /= 2;
        t = Mut(t, t);
    }
    return ans;
}

int front4(int n)
{
	//log10(1/sqrt(5.0))=log10(1)-log(sqrt(5.0))
	//=0 - 0.5 * log (5.0)
	double k=-0.5*( log10(5.0) )+n*log10(fib);
	
	k=k-(int)k;

	k=pow(10.0,k);
	while(k<1000)
		k*=10;
	return (int)k;
}
int main()
{
    // freopen("in.txt", "r", stdin);
	Matrix A;
	
	int f[50];
	f[0]=0;f[1]=1;
	for(int i=2;i<40;i++)  //打表列出前40项
	{
		f[i]=f[i-1]+f[i-2];
	}
	while(scanf("%d",&n)!=EOF)
	{
		if(n<40)
		{
			printf("%d\n",f[n]);
			continue;
		}
		//初始化A
		A.clear();
		A.m[0][0]=1;A.m[0][1]=1;
		A.m[1][0]=1;A.m[1][1]=0;
		
		E=A;

		//后4位。
		Matrix ans=Pow(E,n-2);

		int f4=front4(n);
		//注意格式
		printf("%d...%04d\n",f4,ans.m[0][0]);
	}
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值