题意:
有n盏灯,编号为1到n。0表示不亮,1表示亮,
如果 i-th的灯的左边灯是亮的,那么下一秒钟,
i-th灯的状态要改变,0变成1,1变成0。(第1个灯的
左边是第n个灯)。输入t,输入开始的状态
问你在第t秒时,灯的状态时什么样的,输出来。
分析:
可推出下一秒的状态a[i]=(a[(i-1+n)%n]+a[i])%2;
可以定义乘法矩阵E
1 1 0 0 0.....0 0
0 1 1 0 0.....0 0
0 0 1 1 0.....0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
.
.
0 0 0 0 0 0 0 1 1
有n盏灯,编号为1到n。0表示不亮,1表示亮,
如果 i-th的灯的左边灯是亮的,那么下一秒钟,
i-th灯的状态要改变,0变成1,1变成0。(第1个灯的
左边是第n个灯)。输入t,输入开始的状态
问你在第t秒时,灯的状态时什么样的,输出来。
分析:
可推出下一秒的状态a[i]=(a[(i-1+n)%n]+a[i])%2;
可以定义乘法矩阵E
1 1 0 0 0.....0 0
0 1 1 0 0.....0 0
0 0 1 1 0.....0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
.
.
0 0 0 0 0 0 0 1 1
1 0 0 0 0.....0 1
/*//
快速矩阵幂 HDU 2276
//*/
#include <cstdio>
#include <cstring>
#include <cmath>
int n;
struct Matrix
{
int m[120][120];
void clear()
{
memset(m,0,sizeof(m));
}
}E, Z;
Matrix Mut(Matrix A, Matrix B)
{
Matrix ans;
ans.clear();
for (int i = 0; i<n; i++)
for (int j = 0; j<n; j++)
{
// 稀疏图的优化
if(A.m[i][j]!=0)
{
for (int k = 0; k<n; k++)
{
ans.m[i][k]+=A.m[i][j]*B.m[j][k];
ans.m[i][k]%=2;
}
}
}
return ans;
}
Matrix Pow(Matrix A, int b)
{
Matrix t = A, ans = E;
while (b)
{
if (b % 2)
ans = Mut(ans, t);
b /= 2;
t = Mut(t, t);
}
return ans;
}
int main()
{
// freopen("in.txt", "r", stdin);
int t;
char str[200]; //初始状态。
while(scanf("%d",&t)!=EOF)
{
scanf("%s",str);
n=strlen(str);
//初始化E
E.clear();
E.m[0][0]=E.m[n-1][0]=1;
for(int i=1;i<n;i++)
{
E.m[i-1][i]=E.m[i][i]=1;
}
Matrix ans=Pow(E,t-1);
int sum;
for(int i=0;i<n;i++)
{
sum=0;
for(int j=0;j<n;j++)
{
sum+=((str[j]-'0')*ans.m[j][i]);
}
printf("%d",sum%2);
}
printf("\n");
}
return 0;
}
另一种优化:
由于初始的矩阵是一个循环同构的矩阵,
因此我们可以每次先求出第一行,然后在递推出第二行,
那么这样就从O(n^3)降到O(n^2)
/*//
快速矩阵幂 HDU 2276
//*/
#include <cstdio>
#include <cstring>
#include <cmath>
int n;
struct Matrix
{
int m[105][105];
void clear()
{
memset(m,0,sizeof(m));
}
}E, Z;
Matrix Mut(Matrix A, Matrix B)
{
Matrix ans;
ans.clear();
for (int i = 0; i<n; i++)
for (int j = 0; j<n; j++)
{
ans.m[0][i] ^= (A.m[0][j]&B.m[j][i]);
}
for(int i = 1 ; i < n ; i++)
for(int j = 0; j < n ; j++)
ans.m[i][j] = ans.m[i-1][(j-1+n)%n];
return ans;
}
Matrix Pow(Matrix A, int b)
{
Matrix t = A, ans = E;
while (b)
{
if (b % 2)
ans = Mut(ans, t);
b /= 2;
t = Mut(t, t);
}
return ans;
}
int main()
{
// freopen("in.txt", "r", stdin);
int t;
char str[200]; //初始状态。
while(scanf("%d",&t)!=EOF)
{
scanf("%s",str);
n=strlen(str);
//初始化E
E.clear();
E.m[0][0]=E.m[n-1][0]=1;
for(int i=1;i<n;i++)
{
E.m[i-1][i]=E.m[i][i]=1;
}
Matrix ans=Pow(E,t-1);
int sum;
for(int i=0;i<n;i++)
{
sum=0;
for(int j=0;j<n;j++)
{
sum+=((str[j]-'0')*ans.m[j][i]);
}
printf("%d",sum%2);
}
printf("\n");
}
return 0;
}