快速矩阵幂HDU2276

题意:
有n盏灯,编号为1到n。0表示不亮,1表示亮,
如果 i-th的灯的左边灯是亮的,那么下一秒钟,
i-th灯的状态要改变,0变成1,1变成0。(第1个灯的
左边是第n个灯)。输入t,输入开始的状态
问你在第t秒时,灯的状态时什么样的,输出来。


分析:
可推出下一秒的状态a[i]=(a[(i-1+n)%n]+a[i])%2;
可以定义乘法矩阵E
1 1 0 0 0.....0 0
0 1 1 0 0.....0 0
0 0 1 1 0.....0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
.
.
0 0 0 0 0 0 0 1 1

1 0 0 0 0.....0 1

/*//
快速矩阵幂 HDU 2276
//*/
#include <cstdio>
#include <cstring>
#include <cmath>

int n;

struct Matrix
{
    int m[120][120];
	void clear()
	{
		memset(m,0,sizeof(m));
	}
}E, Z;

Matrix Mut(Matrix A, Matrix B)
{
    Matrix ans;
	ans.clear();
    for (int i = 0; i<n; i++)
        for (int j = 0; j<n; j++)
        {
			// 稀疏图的优化
			if(A.m[i][j]!=0)
			{
				for (int k = 0; k<n; k++)
				{
					ans.m[i][k]+=A.m[i][j]*B.m[j][k];
				ans.m[i][k]%=2;
				}	
			}
        }
    return ans;
}
Matrix Pow(Matrix A, int b)
{
    Matrix t = A, ans = E;
    while (b)
    {
        if (b % 2) 
			ans = Mut(ans, t);
        b /= 2;
        t = Mut(t, t);
    }
    return ans;
}

int main()
{
    // freopen("in.txt", "r", stdin);
	int t;
	char str[200]; //初始状态。
	while(scanf("%d",&t)!=EOF)
	{
		scanf("%s",str);
		n=strlen(str);
		
		//初始化E
		E.clear();
		E.m[0][0]=E.m[n-1][0]=1;
		for(int i=1;i<n;i++)
		{
			E.m[i-1][i]=E.m[i][i]=1;
		}

		Matrix ans=Pow(E,t-1);
		
		int sum;
		for(int i=0;i<n;i++)
		{
			sum=0;
			for(int j=0;j<n;j++)
			{
				sum+=((str[j]-'0')*ans.m[j][i]);
			}
			printf("%d",sum%2);
		}
		printf("\n");
	}
    return 0;
}



另一种优化:

由于初始的矩阵是一个循环同构的矩阵,
因此我们可以每次先求出第一行,然后在递推出第二行,
那么这样就从O(n^3)降到O(n^2)


/*//
快速矩阵幂 HDU 2276

//*/
#include <cstdio>
#include <cstring>
#include <cmath>

int n;

struct Matrix
{
    int m[105][105];
	void clear()
	{
		memset(m,0,sizeof(m));
	}
}E, Z;

Matrix Mut(Matrix A, Matrix B)
{
    Matrix ans;
	ans.clear();
    for (int i = 0; i<n; i++)
        for (int j = 0; j<n; j++)
        {
			ans.m[0][i] ^= (A.m[0][j]&B.m[j][i]);
        }
	for(int i = 1 ; i < n ; i++)
            for(int j = 0; j < n ; j++)
                ans.m[i][j] = ans.m[i-1][(j-1+n)%n];
    return ans;
}
Matrix Pow(Matrix A, int b)
{
    Matrix t = A, ans = E;
    while (b)
    {
        if (b % 2) 
			ans = Mut(ans, t);
        b /= 2;
        t = Mut(t, t);
    }
    return ans;
}

int main()
{
    // freopen("in.txt", "r", stdin);
	int t;
	char str[200]; //初始状态。
	while(scanf("%d",&t)!=EOF)
	{
		scanf("%s",str);
		n=strlen(str);
		
		//初始化E
		E.clear();
		E.m[0][0]=E.m[n-1][0]=1;
		for(int i=1;i<n;i++)
		{
			E.m[i-1][i]=E.m[i][i]=1;
		}

		Matrix ans=Pow(E,t-1);
		
		int sum;
		for(int i=0;i<n;i++)
		{
			sum=0;
			for(int j=0;j<n;j++)
			{
				sum+=((str[j]-'0')*ans.m[j][i]);
			}
			printf("%d",sum%2);
		}
		printf("\n");
	}
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值