HDU 4549 M斐波那契数列
题目链接:HDU 4549
M斐波那契数列F[n]是一种整数数列,它的定义如下:
题意:
F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )
给出a, b, n,求出F[n]对1000000007取模后的值.
分析:
通过代数计算F[n]前几项,
F[2]=a*b; F[3]=a*b^2;
F[4]=(a^2)*(b^3) F[5]=(a^3)*(b^5).
......
可以得到F[n]=a^f(n-1)*b^f(n) .其中f(n)是斐波那契数列(0,1,1,2,3,5,8....)
所以问题转化为快速求出斐波那契数列(n很大)
注:( a^ f(n-1) )%1000000007 是不等于 a^(f(n-1)%1000000007) (因为这个WA了6发,一直觉得没错)
f(n-1)是个很大的数,不能直接求出来再mod。
此时要用到费马小定理:假如p是质数,且Gcd(a,p)=1,那么 a(p-1) ≡1(mod p)。
即是a^f(n-1)%1000000007=a^( f (n - 1 ) %1000000006 )%1000000007
所以利用矩阵快速求出f(n-1)mod1000000006 基本就可以解决了。
/*//
//*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
using namespace std;
typedef long long LL;
int n,mod=1000000007;
struct Matrix
{
LL m[2][2];
void clear()
{
memset(m,0,sizeof(m));
}
}E, Z;
Matrix Mut(Matrix A, Matrix B)
{
Matrix ans;
for (int i = 0; i<2; i++)
for (int j = 0; j<2; j++)
{
ans.m[i][j] = 0;
for (int k = 0; k<2; k++)
{
ans.m[i][j] += ((A.m[i][k])*(B.m[k][j]));
ans.m[i][j]%=(mod-1); // mod 1000000006
}
}
return ans;
}
Matrix Pow(Matrix A, int b)
{
Matrix t = A, ans = E;
while (b)
{
if (b % 2)
ans = Mut(ans, t);
b /= 2;
t = Mut(t, t);
}
return ans;
}
LL P(LL a, LL b)
{
if(b==0)
return 1;
LL x=P(a,b/2);
LL ans=(long long )x*x%mod;
if(b%2)
ans=ans*a%mod;
return ans;
}
int main()
{
// freopen("in.txt", "r", stdin);
Matrix A;
LL a,b;
while(cin>>a>>b>>n)
{
if(n==0)
cout<<a<<endl;
else if(n==1)
cout<<b<<endl;
else
{
LL t1,t2;
A.m[0][0]=1;A.m[0][1]=1;
A.m[1][0]=1;A.m[1][1]=0;
E=A;
Matrix ans=Pow(A,n-2);
// t1 : f(n-1) t2: f(n)
t1=ans.m[0][1];
t2=ans.m[0][0];
LL t=(P(a,t1)*P(b,t2))%mod;
cout<<t<<endl;
}
}
return 0;
}