单源最短路径(算法导论24章)

最短路径算法通常依赖最短路径的一个重要性质:两个结点之间的最短路径包含其他的最短路径。

最优子结构(动态规划和贪心算法指标):最短路径的子路径也是最短路径。

初始化操作(v.π=NIL,s.d=0,除s外v.d=):

INITIALIZE-SINGLE-SOURCE(G,s)
     for each vertex v∈G.V
            v.d=∞
            v.π=NIL
     s.d=0

对边(u,v)松弛操作(将s到u之间的最短距离加上w(u,v),并与当前s到v的最短距离比较更新):

RELAX(u,v,w)
    if v.d>u.d+w(u,v)
    v.d=u.d+w(u,v)
    v.π=u

Bellman-Ford算法(贝尔曼-福特算法)反复松弛:

BELLMAN-FORD(G,w,s)
    INITIALIZE-SINGLE-SOURCE(G,s)
    for i=1 to |G.V|-1
           for each edge∈G.E              
                  RELAX(u,v,w)
for each edge(u,v)∈G.E
       if v.d>u.d+w(u,v)
             return FALSE
return TRUE

 
 

Dijkstra算法(迪杰斯特拉算法):

在算法的运行过程中维持一组结点集合S。从源结点s到该集合中每个结点之间的最短路径都已经被找到。从V-S集合中选择最短路径估计最小的结点u,将u加入S,然后对所有从u发出的边进行松弛。我们使用一个最小优先队列Q来保存结点集合,每个节点的关键值为其d值。

DIJKSTRA.(G,w,s)
   INITIALIZE-SINGLE-SOURCE(G,s)
   S=∅
   Q=G.V
   while Q≠∅
        u=EXTRACT-MIN(Q)
        S=S{u}
        for each vertex v∈G.Adj[u]
            RELAX(u,v,w)


好的,这是两个问题。让我分别回答。 --- 对于习题24.2-4,我们需要证明:对于有向图$G=(V,E)$,从源点$s$到任何其他点$v\in V$的最短路径上最多可以包含$|V|-1$条边。 我们可以使用反证法来证明这个结论。假设存在一条从$s$到$v$的最短路径包含了$|V|$条边。由于这是一条简路径,所以它经过了$|V|$个顶点中的所有顶点。因此,这个路径形成了一个简环。我们可以从这个简环中删除任意一条边,得到一条从$s$到$v$的路径,路径长度比原来的最短路径长度更小,这与原来的最短路径的假设相矛盾。因此,假设不成立,结论得证。 --- 对于习题24.3-6,我们需要证明:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最短路径。 我们可以使用反证法来证明这个结论。假设存在一个从$s$到$v$的最短路径上存在一个负权重环。由于负权重环的存在,我们可以通过不断绕这个环走来无限制地减小路径长度,因此不存在从$s$到$v$的最短路径。但是,Bellman-Ford算法会在第$|V|$次松弛操作之前终止,并且在第$i$次松弛操作之后,算法会计算出从$s$到所有距离$s$不超过$i$的顶点的最短路径。因此,我们可以得出结论:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最短路径
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值