http://acm.hdu.edu.cn/showproblem.php?pid=5015
因为是个二维的递推式,当时没有想到可以这样构造矩阵。从列上看,当前这一列都是由前一列递推得到。根据这一点来构造矩阵。令b[i]代表第i列,是一个(n+2)*1的矩阵,即b[1] = [1,233......],之所以在加了两行,是要从前一个矩阵b[i-1]得到b[i]中的第二个数2333...,再构造一个转换矩阵a,它是一个(n+2)*(n+2)的矩阵,那么a^(m-1) * b就是第m列。
/*
a矩阵:
1 0 0 0 0...
3 10 0 0 0...
3 10 1 0 0...
3 10 1 1 0...
3 10 1 1 1...
..
b矩阵:第1列
*/
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL __int64
//#define LL long long
#define eps 1e-9
#define PI acos(-1.0)
using namespace std;
const int INF = 0x3f3f3f3f;
const int mod = 10000007;
struct matrix
{
LL mat[15][15];
void init()
{
memset(mat,0,sizeof(mat));
for(int i = 0; i < 15; i++)
{
mat[i][i] = 1;
}
}
}a,b,res;
int n,m;
matrix mul(matrix a, matrix b)
{
matrix ans;
memset(ans.mat,0,sizeof(ans.mat));
for(int i = 0; i < n+2; i++)
{
for(int k = 0; k < n+2; k++)
{
if(a.mat[i][k] == 0)
continue;
for(int j = 0; j < n+2; j++)
{
ans.mat[i][j] += (a.mat[i][k] * b.mat[k][j])%mod;
ans.mat[i][j] %= mod;
}
}
}
return ans;
}
matrix pow(matrix a, int n)
{
matrix ans;
ans.init();
while(n)
{
if(n&1)
ans = mul(ans,a);
n >>= 1;
a = mul(a,a);
}
return ans;
}
int main()
{
int x;
while(~scanf("%d %d",&n,&m))
{
memset(b.mat,0,sizeof(b.mat));
b.mat[0][0] = 1;
b.mat[1][0] = 233;
for(int i = 2; i < n+2; i++)
{
scanf("%d",&x);
b.mat[i][0] = (b.mat[i-1][0] + x%mod)%mod;
}
memset(a.mat,0,sizeof(a.mat));
a.mat[0][0] = 1;
for(int i = 1; i < n+2; i++)
{
a.mat[i][0] = 3;
a.mat[i][1] = 10;
for(int j = 2; j <= i; j++)
a.mat[i][j] = 1;
}
res = pow(a,m-1);
LL anw = 0;
for(int i = 0; i < n+2; i++)
{
anw += (res.mat[n+1][i] * b.mat[i][0])%mod;
anw %= mod;
}
printf("%I64d\n",anw);
}
return 0;
}