hdu 5015 233 Matrix(构造矩阵)

http://acm.hdu.edu.cn/showproblem.php?pid=5015


因为是个二维的递推式,当时没有想到可以这样构造矩阵。从列上看,当前这一列都是由前一列递推得到。根据这一点来构造矩阵。令b[i]代表第i列,是一个(n+2)*1的矩阵,即b[1] = [1,233......],之所以在加了两行,是要从前一个矩阵b[i-1]得到b[i]中的第二个数2333...,再构造一个转换矩阵a,它是一个(n+2)*(n+2)的矩阵,那么a^(m-1) * b就是第m列。


/*
a矩阵:
1 0 0 0 0...
3 10 0 0 0...
3 10 1 0 0...
3 10 1 1 0...
3 10 1 1 1...
..

b矩阵:第1列

*/
#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL __int64
//#define LL long long
#define eps 1e-9
#define PI acos(-1.0)
using namespace std;
const int INF = 0x3f3f3f3f;
const int mod = 10000007;

struct matrix
{
	LL mat[15][15];
	void init()
	{
		memset(mat,0,sizeof(mat));
		for(int i = 0; i < 15; i++)
		{
			mat[i][i] = 1;
		}
	}
}a,b,res;

int n,m;

matrix mul(matrix a, matrix b)
{
	matrix ans;
	memset(ans.mat,0,sizeof(ans.mat));
	for(int i = 0; i < n+2; i++)
	{
		for(int k = 0; k < n+2; k++)
		{
			if(a.mat[i][k] == 0)
				continue;
			for(int j = 0; j < n+2; j++)
			{
				ans.mat[i][j] += (a.mat[i][k] * b.mat[k][j])%mod;
				ans.mat[i][j] %= mod;
			}
		}
	}
	return ans;
}

matrix pow(matrix a, int n)
{
	matrix ans;
	ans.init();
	while(n)
	{
		if(n&1)
			ans = mul(ans,a);
		n >>= 1;
		a = mul(a,a);
	}
	return ans;
}

int main()
{
	int x;
	while(~scanf("%d %d",&n,&m))
	{
		memset(b.mat,0,sizeof(b.mat));
		b.mat[0][0] = 1;
		b.mat[1][0] = 233;
		for(int i = 2; i < n+2; i++)
		{
			scanf("%d",&x);
			b.mat[i][0] = (b.mat[i-1][0] + x%mod)%mod;
		}

		memset(a.mat,0,sizeof(a.mat));
		a.mat[0][0] = 1;
		for(int i = 1; i < n+2; i++)
		{
			a.mat[i][0] = 3;
			a.mat[i][1] = 10;
			for(int j = 2; j <= i; j++)
				a.mat[i][j] = 1;
		}
		res = pow(a,m-1);
		LL anw = 0;
		for(int i = 0; i < n+2; i++)
		{
			anw += (res.mat[n+1][i] * b.mat[i][0])%mod;
			anw %= mod;
		}
		printf("%I64d\n",anw);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值