请证明:1+2+…n = n*(n+1)/2
证明:
设 S = 1+2+…n,倒序后亦可写成n+(n-1)+…+1
则S=n+(n-1)+…+1
两者相加2S = (1+n)+[2+(n-1)]+…(n+1) = n*(n+1)
故:S = n(n+1)/2,即:
1+2+…n = n*(n+1)/2
10-06
401

请证明:1+2+…n = n*(n+1)/2
证明:
设 S = 1+2+…n,倒序后亦可写成n+(n-1)+…+1
则S=n+(n-1)+…+1
两者相加2S = (1+n)+[2+(n-1)]+…(n+1) = n*(n+1)
故:S = n(n+1)/2,即:
1+2+…n = n*(n+1)/2