一、引言
上一篇文章《计算机视觉|Mask2Former:开启实例分割新范式》,我们学习了 Mask2Former 的框架原理、优缺点以及应用领域。今天要带大家一起探索一个强大的图像分割工具——Mask2Former。作为一名技术博主,我的目标是让复杂的概念变得简单易懂,即使你是刚入门的小白,也能通过这篇文章学会使用 Mask2Former 进行 全景分割、实例分割和语义分割。我会用通俗的语言一步步讲解,还会提供实际操作代码,让你马上上手!
Mask2Former 是一个多功能的图像分割模型,它能同时处理三种任务:全景分割、实例分割和语义分割。听起来是不是有点高大上?其实它就像一个“万能的图像分析师”,能帮你轻松搞定图像中的物体识别和分割。
举个例子:想象你有一张照片,里面有几只猫在草地上玩耍。Mask2Former 可以:
- 告诉你哪些像素是“猫”,哪些是“草地”(语义分割);
- 区分出每只猫的具体位置和轮廓(实例分割);
- 把照片里所有的猫和背景都分割出来,每只猫和背景都有自己的区域(全景分割)。
这篇文章将带你从基础概念到实战操作,学会如何使用 Mask2Former 处理图像分割任务。
二、分割任务简介
在进入实战之前,我们先简单了解一下这三种分割任务的区别,用生活化的例子帮你快速get到重点。
2.1 语义分割
语义分割的目标是为图像中的每一个像素打上类别标签。比如在一张街景照片中,它会标记出“道路”、“行人”、“树木”等区域。但它不会区分同一个类别中的不同个体——如果有两辆车,它只会告诉你这些像素都是“车”,不会分开标记。
举例:照片里有三只猫,语义分割会告诉你哪些地方是“猫”,哪些是“背景”,但不会告诉你哪只猫是哪只。
2.2 实例分割
实例分割比语义分割更进一步,它不仅知道像素属于哪个类别,还能区分出同一个类别中的不同个体。还是那张猫的照片,实例分割会把三只猫分别标记为“猫1”、“猫2”、“猫3”,并为每只猫画出单独的轮廓。
举例:就像你在照片里给每只猫贴上名字,还画出它们的具体形状。
2.3 全景分割
全景分割是语义分割和实例分割的“合体”。它会把图像中的所有物体(包括背景)都分割出来,并为每个物体和背景区域分配唯一的标签。简单来说,它既能识别类别,又能区分个体,还包括背景。
举例:在猫的照片中,全景分割会把每只猫和草地都分割出来,每只猫有自己的轮廓,草地也有自己的区域,就像一张完整的“分割地图”。
三、 Mask2Former原理简介
Mask2Former 是基于 Transformer 架构的模型,它用了一种叫做“掩码分类”的方法。了解具体架构可以看之前的文章:《计算机视觉|Mask2Former:开启实例分割新范式》
听起来有点复杂?别急,我来用简单的比喻解释一下。
Mask2Former 的工作方式就像一个聪明的画家:
- 它先在图像上画出一堆区域(这些区域叫“掩码”),每个掩码可能对应一个物体或背景。
- 然后,它会判断每个区域是什么,比如“这个区域是猫,那个区域是草地”。
它的厉害之处在于,这一个模型就能同时搞定全景分割、实例分割和语义分割,只需要在最后处理结果时稍微调整一下就行。这样既省事又高效!
四、 实战操作:使用Mask2Former进行图像分割
好了,现在进入最激动人心的部分——实战操作!我将教你如何用 Mask2Former 对一张图像进行分割。你不需要高端GPU,也不需要深厚的编程基础,只需一台普通电脑和一些简单的Python代码,就能体验它的强大功能。
4.1 准备工作
首先,你需要在电脑上安装几个Python库:
transformers
:Hugging Face 提供的库,包含 Mask2Former 模型。torch
:PyTorch 库,Mask2Former 的运行基础。pillow
:用于处理图像。
打开终端或命令行,输入以下命令安装:
pip install transformers torch pillow
4.2 加载预训练模型和处理器
Hugging Face 提供了 Mask2Former 的预训练模型,我们可以直接用。下面以全景分割为例:
from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerImageProcessor
# 加载预训练模型和处理器
## 1. 全景分割
panoptic_model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")
panoptic_processor = Mask2FormerImageProcessor.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")
## 2. 语义分割
semantic_model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-ade-semantic")
semantic_processor = Mask2FormerImageProcessor.from_pretrained("facebook/mask2former-swin-base-ade-semantic")
## 3. 实例分割
instance_model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-large-coco-instance")
instance_processor = Mask2FormerImageProcessor.from_pretrained("facebook/mask2former-swin-large-coco-instance")
代码解释:
model
:加载 Mask2Former 模型,用于分割任务。processor
:加载图像处理器,负责把图像变成模型能理解的格式。
4.3 加载图像
准备一张你想分割的图片,可以是网上的图片,也可以是你自己拍的照片。例如:猫、狗、风景都可以。
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
这里我们使用一张网络图片。
4.4 预处理图像
在输入模型之前,我们需要用处理器对图像进行预处理,比如调整大小、标准化等。
# 预处理图像
## 全景分割
panoptic_inputs = panoptic_processor(images=image, return_tensors="pt")
## 语义分割
semantic_inputs = semantic_processor(images=image, return_tensors="pt")
## 实例分割
instance_inputs = instance_processor(images=image, return_tensors="pt")
代码解释:这一步把图像转换成 PyTorch 张量,方便模型处理。
4.5 模型推理
接下来,把预处理后的图像输入模型,得到分割结果。
import torch
# 模型推理
## 全景分割
with torch.no_grad():
panoptic_outputs = panoptic_model(**panoptic_inputs)
## 语义分割
with torch.no_grad():
semantic_outputs = semantic_model(**semantic_inputs)
## 实例分割
with torch.no_grad():
instance_outputs = instance_model(**instance_inputs)
代码解释:
with torch.no_grad()
:在推理时用这个,可以节省内存。model(**inputs)
:把图像输入模型,得到原始输出。
4.6 后处理
模型的输出是原始数据,我们需要后处理一下,才能得到最终的分割结果。
# 后处理
## 全景分割
panoptic_result = panoptic_processor.post_process_panoptic_segmentation(panoptic_outputs, target_sizes=[image.size[::-1]])[0]
## 语义分割
semantic_seg = semantic_processor.post_process_semantic_segmentation(semantic_outputs, target_sizes=[image.size[::-1]])[0]
## 实例分割
instance_result = instance_processor.post_process_instance_segmentation(instance_outputs, target_sizes=[image.size[::-1]], threshold=0.9)[0]
代码解释:
post_process_panoptic_segmentation
:把模型输出转换成全景分割结果。target_sizes
:确保输出的掩码大小和原图一致。threshold
: 用于控制 置信度筛选,也就是说,只有 置信度高于该阈值 的实例才会被保留下来。
4.7 可视化结果
为了看到分割效果,我们需要把结果变成一张彩色的图片。这里用简单的可视化代码:
import numpy as np
import matplotlib.pyplot as plt
# 全景分割
panoptic_seg = panoptic_result["segmentation"]
panoptic_visualization = np.zeros((panoptic_seg.shape[0], panoptic_seg.shape[1], 3), dtype=np.uint8)
for segment in panoptic_result["segments_info"]:
segment_id = segment["id"]
color = np.random.randint(0, 255, size=3)
panoptic_visualization[panoptic_seg == segment_id] = color
# 语义分割
semantic_visualization = np.zeros((semantic_seg.shape[0], semantic_seg.shape[1], 3), dtype=np.uint8)
unique_labels = torch.unique(semantic_seg)
for label in unique_labels:
color = np.random.randint(0, 255, size=3)
semantic_visualization[semantic_seg == label] = color
# 实例分割
instance_visualization = np.zeros((instance_seg.shape[0], instance_seg.shape[1], 3), dtype=np.uint8)
for i in range(len(instance_result["segments_info"])):
mask = instance_seg == i
color = np.random.randint(0, 255, size=3)
instance_visualization[mask] = color
# 4. 可视化
fig, axs = plt.subplots(2, 2, figsize=(10, 10))
# 原图
axs[0, 0].imshow(image)
axs[0, 0].set_title("Original Image")
axs[0, 0].axis('off')
# 全景分割
axs[0, 1].imshow(panoptic_visualization)
axs[0, 1].set_title("Panoptic Segmentation")
axs[0, 1].axis('off')
# 语义分割
axs[1, 0].imshow(semantic_visualization)
axs[1, 0].set_title("Semantic Segmentation")
axs[1, 0].axis('off')
# 实例分割
axs[1, 1].imshow(instance_visualization)
axs[1, 1].set_title("Instance Segmentation")
axs[1, 1].axis('off')
plt.tight_layout()
plt.show()
代码解释:
panoptic_seg
:分割掩码,每个像素值对应一个区域的ID。segments_info
:包含每个区域的类别信息。- 我们为每个区域随机分配颜色,然后显示出来
运行这段代码,你会看到一张彩色的分割结果图(如下图所示),每个物体和背景都有不同的颜色。
五、 总结
通过这篇文章,你已经学会了如何使用 Mask2Former 进行图像分割。从基础概念到代码实战,小白也能轻松入门!
希望这篇分享能帮到你!如果有任何问题,欢迎留言交流。快去试试吧,用 Mask2Former 解锁图像分割的乐趣!
具体用法可以参考 Hugging Face 文档。
延伸阅读
-
计算机视觉系列文章
计算机视觉|Mask2Former:开启实例分割新范式
计算机视觉|目标检测进化史:从R-CNN到YOLOv11,技术的狂飙之路
轻量化网络设计|ShuffleNet:深度学习中的轻量化革命
计算机视觉基础|轻量化网络设计:MobileNetV3
计算机视觉基础|数据增强黑科技——AutoAugment
计算机视觉基础|数据增强黑科技——MixUp
计算机视觉基础|数据增强黑科技——CutMix
计算机视觉基础|卷积神经网络:从数学原理到可视化实战
计算机视觉基础|从 OpenCV 到频域分析
-
机器学习核心算法系列文章
解锁机器学习核心算法|神经网络:AI 领域的 “超级引擎”
解锁机器学习核心算法|主成分分析(PCA):降维的魔法棒
解锁机器学习核心算法|朴素贝叶斯:分类的智慧法则
解锁机器学习核心算法 | 支持向量机算法:机器学习中的分类利刃
解锁机器学习核心算法 | 随机森林算法:机器学习的超强武器
解锁机器学习核心算法 | K -近邻算法:机器学习的神奇钥匙
解锁机器学习核心算法 | K-平均:揭开K-平均算法的神秘面纱
解锁机器学习核心算法 | 决策树:机器学习中高效分类的利器
解锁机器学习核心算法 | 逻辑回归:不是回归的“回归”
解锁机器学习核心算法 | 线性回归:机器学习的基石
-
深度学习框架探系列文章
深度学习框架探秘|TensorFlow:AI 世界的万能钥匙
深度学习框架探秘|PyTorch:AI 开发的灵动画笔
深度学习框架探秘|TensorFlow vs PyTorch:AI 框架的巅峰对决
深度学习框架探秘|Keras:深度学习的魔法钥匙