台球碰撞
时间限制:1000 ms | 内存限制:65535 KB
难度:3
-
描述
-
在平面直角坐标系下,台球桌是一个左下角在(0,0),右上角在(
L
,
W
)的矩形。有一个球心在(
x
,
y
),半径为
R
的圆形母球放在台球桌上(整个球都在台球桌内)。受撞击后,球沿极角为
a
的射线(即:
x
正半轴逆时针旋转到此射线的角度为
a
)飞出,每次碰到球桌时均发生完全弹性碰撞(球的速率不变,反射角等于入射角)。
如果球的速率为v,s个时间单位之后球心在什么地方?
-
输入
- 输入文件最多包含25组测试数据,每个数据仅一行,包含8个正整数L,W,x,y,R,a,v,s(100<=L,W<=10^5, 1<=R<=5, R<=x<=L-R, R<=y<=W-R, 0<=a<360, 1<=v,s<=10^5),含义见题目描述。L=W=x=y=R=a=v=s=0表示输入结束,你的程序不应当处理这一行。 输出
- 对于每组数据,输出仅一行,包含两个实数x, y,表明球心坐标为(x,y)。x和y应四舍五入保留两位小数。 样例输入
-
100 100 80 10 5 90 2 23
110 100 70 10 5 180 1 9999
0 0 0 0 0 0 0 0
样例输出
-
80.00 56.00
71.00 10.00
思路:
由于球是沿斜方向运动的,因此我们可以将速度分解为X轴和Y轴上的速度vx,vy;
球是一个半径为r的实体,我们可以将题目转化为球心在距大矩形四边为r的小矩形中运动。
源代码:
#include <stdio.h>
#include<iostream>
#include <cmath>
using namespace std;
int main()
{
int t;
int l, w, r, a, v, s;
double x, y;
double pi = acos( -1 );
double vx, vy;
while( cin>>l>>w>>x>>y>>r>>a>>v>>s )
{
if( l==0 ) break;
//计算速度的分量
vy=sin( a*pi/180 )*v;
vx=cos( a*pi/180 )*v;
t=0;
//将球看成点在内框里运动。计算内边框的坐标
int left = r;
int right = l-r;
int bottom = r;
int top = w - r;
//计算每个时间后球心的位置。
while( t!=s )
{
x+=vx;
y+=vy;
while( (x<left) || (x>right) || (y<bottom) || (y>top) )
{
if( x < left ) x=2*r-x, vx=-vx;
if( x > right ) x=2*l-2*r-x, vx=-vx;
if( y < bottom) y=2*r-y, vy =-vy;
if( y > top ) y=2*w-2*r-y, vy =-vy;
}
t++;
}
printf( "%.2f %.2f\n", x, y );
}
return 0;
}