【算法修炼】台球碰撞 C

台球碰撞

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
描述
在平面直角坐标系下,台球桌是一个左下角在(0,0),右上角在( L , W )的矩形。有一个球心在( x , y ),半径为 R 的圆形母球放在台球桌上(整个球都在台球桌内)。受撞击后,球沿极角为 a 的射线(即: x 正半轴逆时针旋转到此射线的角度为 a )飞出,每次碰到球桌时均发生完全弹性碰撞(球的速率不变,反射角等于入射角)。 acm8

如果球的速率为vs个时间单位之后球心在什么地方?

输入
输入文件最多包含25组测试数据,每个数据仅一行,包含8个正整数L,W,x,y,R,a,v,s(100<=L,W<=10^5, 1<=R<=5, R<=x<=L-R, R<=y<=W-R, 0<=a<360, 1<=v,s<=10^5),含义见题目描述。L=W=x=y=R=a=v=s=0表示输入结束,你的程序不应当处理这一行。
输出
对于每组数据,输出仅一行,包含两个实数x, y,表明球心坐标为(x,y)。x和y应四舍五入保留两位小数。
样例输入
100 100 80 10 5 90 2 23
110 100 70 10 5 180 1 9999
0 0 0 0 0 0 0 0
样例输出
80.00 56.00
71.00 10.00

思路:
由于球是沿斜方向运动的,因此我们可以将速度分解为X轴和Y轴上的速度vx,vy;
球是一个半径为r的实体,我们可以将题目转化为球心在距大矩形四边为r的小矩形中运动。
源代码:
#include <stdio.h>
 #include<iostream>
 #include <cmath>
 using namespace std;
 int main()
 {
 int t;
 int l, w, r, a, v, s;
 double x, y;
 double pi = acos( -1 );
 double vx, vy;
 while( cin>>l>>w>>x>>y>>r>>a>>v>>s )
 {
 if( l==0 ) break;
 //计算速度的分量 
 vy=sin( a*pi/180 )*v;
 vx=cos( a*pi/180 )*v;
 t=0;
 //将球看成点在内框里运动。计算内边框的坐标
 int left = r;
int  right = l-r;
 int bottom = r;
 int top = w - r;
 //计算每个时间后球心的位置。 
 while( t!=s )
 {
 x+=vx;
 y+=vy;
 while( (x<left) || (x>right) || (y<bottom) || (y>top) )
 {
 if( x < left ) x=2*r-x, vx=-vx;
 if( x > right ) x=2*l-2*r-x, vx=-vx;
 if( y < bottom) y=2*r-y, vy =-vy;
 if( y > top ) y=2*w-2*r-y, vy =-vy;
 }
 t++;
 }
 printf( "%.2f %.2f\n", x, y );
 }
 return 0;
 }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

紫雾凌寒

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值