多变量线性回归
Linear Regression with Multiple Variables
房屋估价问题
在单变量线性回归一章,我们讲到了房屋估价问题,以房屋面积这一单变量来决定房屋的估价。在多变量线性回归这章,我们将会引入多特征即多个变量,例如房屋面积、卧室数量、楼层数量、房屋年龄,通过四维特征来更为准确预测房屋的价格。
假设h(x)=θ0+θ1x1+θ2x2+…+θnxn,多参数线性回归即每个输入x有(n+1)维[x0……xn]
多变量的梯度下降
左边是单变量梯度下降,右图为多变量梯度下降。
归一化方法Feature Scaling,使得特征能够保持相同大小范围如[0,1],避免特征值大小相差太大难以分析。如下图所示,我们将x1、x2这两个变量的值归一化至[0,1]区间。
在归一化中,用x-u替代x,其中u是数据集x的平均值,这样得到的新特征值范围将是[-0.5,0.5]。
学习率(Learning Rate)
在梯度下降中,我们需要考虑的是,如何确定梯度下降方法是否准确运行以及如何选择学习率α。
绘制图表来观测算法在何时趋于收敛,下降说明正常,若增大或来回波动,可能是α过大的问题。
总结:如果α值太小,将会影响收敛速度,如果α值过大,可能导致收敛失败。那如何选取学习率呢?比如先测试α=0.001,如果收敛太慢就测试0.01,如果大了?那就0.003,以此类推。
特征与多项式回归
Features and Polynomial Regression
假设我们的输入为一座房子的size,输出为该house的price,对其进行多项式拟合:
有两个选择,二次方程或者三次方程。考虑到二次方程的话总会到最高点后随着size增大而price减小,不合常理;因此选用三次方程进行拟合。
绘制好特征图像后,可能会出现多种拟合方程,而归一化则是关键,如洋红色曲线拟合所示。
正规方程
正规方程Normal Equation是和gradient descent一样常用的算法,它采用线性代数中非迭代的方法。
正规方程可以将寻找使cost function 最小的θ这一问题转化为寻找使得导数取0时的参数θ。以房屋估价问题为例,我们继续往下分析。
其中,X是m×(n+1)的矩阵,y是m×1的矩阵。对于那些不可逆的矩阵(通常是因为特征之间不独立,或特征数量大于训练集的数量),正规方程方法是不能用的。
如果正规方程中不可逆,可能是因为特征冗余或者特征过多,那么我们可以选择删除一些不重要的特征或使用正则化。