【机器学习】Andrew Ng——04多变量线性回归

多变量线性回归

Linear Regression with Multiple Variables


房屋估价问题

  在单变量线性回归一章,我们讲到了房屋估价问题,以房屋面积这一单变量来决定房屋的估价。在多变量线性回归这章,我们将会引入多特征即多个变量,例如房屋面积、卧室数量、楼层数量、房屋年龄,通过四维特征来更为准确预测房屋的价格。

  假设h(x)=θ0+θ1x1+θ2x2+…+θnxn,多参数线性回归即每个输入x有(n+1)维[x0……xn]


多变量的梯度下降

  左边是单变量梯度下降,右图为多变量梯度下降。

  归一化方法Feature Scaling,使得特征能够保持相同大小范围如[0,1],避免特征值大小相差太大难以分析。如下图所示,我们将x1、x2这两个变量的值归一化至[0,1]区间。


在归一化中,用x-u替代x,其中u是数据集x的平均值,这样得到的新特征值范围将是[-0.5,0.5]。


学习率(Learning Rate)

  在梯度下降中,我们需要考虑的是,如何确定梯度下降方法是否准确运行以及如何选择学习率α。

  绘制图表来观测算法在何时趋于收敛,下降说明正常,若增大或来回波动,可能是α过大的问题。

  总结:如果α值太小,将会影响收敛速度,如果α值过大,可能导致收敛失败。那如何选取学习率呢?比如先测试α=0.001,如果收敛太慢就测试0.01,如果大了?那就0.003,以此类推。


特征与多项式回归

Features and Polynomial Regression

  假设我们的输入为一座房子的size,输出为该house的price,对其进行多项式拟合:
  有两个选择,二次方程或者三次方程。考虑到二次方程的话总会到最高点后随着size增大而price减小,不合常理;因此选用三次方程进行拟合。

  绘制好特征图像后,可能会出现多种拟合方程,而归一化则是关键,如洋红色曲线拟合所示。


正规方程

  正规方程Normal Equation是和gradient descent一样常用的算法,它采用线性代数中非迭代的方法。


  正规方程可以将寻找使cost function 最小的θ这一问题转化为寻找使得导数取0时的参数θ。以房屋估价问题为例,我们继续往下分析。

  其中,X是m×(n+1)的矩阵,y是m×1的矩阵。对于那些不可逆的矩阵(通常是因为特征之间不独立,或特征数量大于训练集的数量),正规方程方法是不能用的。

  如果正规方程中不可逆,可能是因为特征冗余或者特征过多,那么我们可以选择删除一些不重要的特征或使用正则化。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值