BZOJ 2301: [HAOI2011]Problem b(莫比乌斯反演,分块,容斥)

题目链接
题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

HDU1695基本是类似的,这道题如果还是使用之前的方法计算

f(k)=k|du(dk)F(d)=k|du(dk)BdDd
(其中k=1,B,D分别是两个区间右端点)会TLE,这里面有一个优化的地方,因为
Nx2×N
所以就会存在
Nx=Nx+1...
等,这样一段连续的区间就可以分成一块。

比如N=16,当

6d8
的时候,有
166=167=168=2

那么函数
f(1)=1|du(d)F(d)
6d8
的时候F(d)的结果都是一样的,即
F(6)=F(7)=F(8)

那么
f(1)=...+u(6)F(6)+u(7)F(7)+u(8)F(8)+...=...+F(6)[u(6)+u(7)+u(8)]+...

这样u函数用前缀和维护,这段就
O(1)
计算了,所以这段计算的时间由
O(n)
降到
O(N)


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define cl(a,b) memset(a,b,sizeof(a))
#define ll long long
#define pb push_back
#define gcd __gcd

const double EPS = 1e-8;
const int maxn = 1e5+1000;
const int inf  = 0x3f3f3f3f;
const double PI = acos(-1.0);

bool check[maxn];
int prime[maxn];
int mu[maxn];
void Moblus(){
    cl(check,false);
    mu[1]=1;int tot=0;
    for(int i=2;i<maxn;i++){
        if(!check[i]){
            prime[tot++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<tot;j++){
            if(i*prime[j]>maxn)break;
            check[i*prime[j]]=true;
            if(i%prime[j]==0){
                mu[i*prime[j]]=0;break;
            }
            else mu[i*prime[j]]=-mu[i];
        }
    }
}
int k;
/*
//TLE 代码
ll cal(int n,int m){
    n/=k;m/=k;
    if(n>m)swap(n,m);
    ll ans=0;
    for(int i=1;i<=n;i++)ans+=(ll)mu[i]*(n/i)*(m/i);
    return ans;
}*/
ll sum[maxn];
//分块优化 N/x值的种类个数不大于2*sqrt(N)
ll cal(int n,int m){
    n/=k;m/=k;
    if(n>m)swap(n,m);
    ll ans=0;
    for(int i=1,last=0;i<=n;i=last+1){
        last=min(n/(n/i),m/(m/i));//计算当前i能往右边扩的位置,比如N=16,i=6,那么就能扩到8的位置
        ans+=(sum[last]-sum[i-1])*(n/i)*(m/i);
    }
    return ans;
}

int main(){
    int T;scanf("%d",&T);
    Moblus();
    sum[0]=0;for(int i=1;i<maxn;i++)sum[i]=sum[i-1]+mu[i];
    while(T--){
        int a,b,c,d;
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        printf("%lld\n",cal(b,d)-cal(a-1,d)-cal(c-1,b)+cal(a-1,c-1));//容斥原理

    }
    return 0;
}
发布了524 篇原创文章 · 获赞 33 · 访问量 28万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览