定义:
在数学和计算中,L2 范数是一种用于测量向量长度或大小的方法,也被称为欧几里得范数。对于一个 n 维向量
x
=
(
x
1
,
x
2
,
…
,
x
n
)
\mathbf{x} = (x_1, x_2, \dots, x_n)
x=(x1,x2,…,xn),其 L2 范数定义为:
∥
x
∥
2
=
x
1
2
+
x
2
2
+
⋯
+
x
n
2
\| \mathbf{x} \|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}
∥x∥2=x12+x22+⋯+xn2
解释:
- 几何意义:L2 范数表示从原点到向量终点的直线距离,即向量在欧几里得空间中的长度。
- 计算方法:将向量各分量的平方求和,然后取平方根。
性质:
-
非负性: ∥ x ∥ 2 ≥ 0 \| \mathbf{x} \|_2 \geq 0 ∥x∥2≥0,且只有当 x = 0 \mathbf{x} = \mathbf{0} x=0 时, ∥ x ∥ 2 = 0 \| \mathbf{x} \|_2 = 0 ∥x∥2=0。
-
齐次性(正比例性):对于任何实数 α \alpha α,有 ∥ α x ∥ 2 = ∣ α ∣ ∥ x ∥ 2 \| \alpha \mathbf{x} \|_2 = |\alpha| \| \mathbf{x} \|_2 ∥αx∥2=∣α∣∥x∥2。
-
三角不等式:对于任意向量 x , y \mathbf{x}, \mathbf{y} x,y,有
∥ x + y ∥ 2 ≤ ∥ x ∥ 2 + ∥ y ∥ 2 \| \mathbf{x} + \mathbf{y} \|_2 \leq \| \mathbf{x} \|_2 + \| \mathbf{y} \|_2 ∥x+y∥2≤∥x∥2+∥y∥2 -
平移不变性:L2 范数只与向量的方向和长度有关,与其位置无关。
举例:
-
二维向量:对于向量 x = ( 3 , 4 ) \mathbf{x} = (3, 4) x=(3,4),其 L2 范数为:
∥ x ∥ 2 = 3 2 + 4 2 = 9 + 16 = 5 \| \mathbf{x} \|_2 = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 ∥x∥2=32+42=9+16=5 -
三维向量:对于向量 x = ( 1 , 2 , 2 ) \mathbf{x} = (1, 2, 2) x=(1,2,2),其 L2 范数为:
∥ x ∥ 2 = 1 2 + 2 2 + 2 2 = 1 + 4 + 4 = 3 \| \mathbf{x} \|_2 = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = 3 ∥x∥2=12+22+22=1+4+4=3
应用:
- 机器学习:在正则化方法中,如 Ridge 回归(岭回归),使用 L2 范数来防止过拟合。
- 优化算法:在许多优化问题中,L2 范数用于定义损失函数或约束条件。
- 信号处理:用于衡量信号的能量或误差大小。
- 计算机视觉:用于衡量图像或特征向量之间的相似度。
与其他范数的比较:
-
L1 范数:定义为向量各分量绝对值之和:
∥ x ∥ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x n ∣ \| \mathbf{x} \|_1 = |x_1| + |x_2| + \dots + |x_n| ∥x∥1=∣x1∣+∣x2∣+⋯+∣xn∣ -
L∞ 范数:定义为向量各分量绝对值的最大值:
∥ x ∥ ∞ = max { ∣ x 1 ∣ , ∣ x 2 ∣ , … , ∣ x n ∣ } \| \mathbf{x} \|_\infty = \max\{ |x_1|, |x_2|, \dots, |x_n| \} ∥x∥∞=max{∣x1∣,∣x2∣,…,∣xn∣}
总结:
L2 范数是衡量向量长度的标准方法,广泛应用于数学、物理和工程领域。它具有良好的数学性质,能有效地描述向量的特征和性质,是分析和计算中常用的工具。