什么是L2范数

定义:

在数学和计算中,L2 范数是一种用于测量向量长度或大小的方法,也被称为欧几里得范数。对于一个 n 维向量 x = ( x 1 , x 2 , … , x n ) \mathbf{x} = (x_1, x_2, \dots, x_n) x=(x1,x2,,xn),其 L2 范数定义为:
∥ x ∥ 2 = x 1 2 + x 2 2 + ⋯ + x n 2 \| \mathbf{x} \|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} x2=x12+x22++xn2


解释:

  • 几何意义:L2 范数表示从原点到向量终点的直线距离,即向量在欧几里得空间中的长度。
  • 计算方法:将向量各分量的平方求和,然后取平方根。

性质:

  1. 非负性 ∥ x ∥ 2 ≥ 0 \| \mathbf{x} \|_2 \geq 0 x20,且只有当 x = 0 \mathbf{x} = \mathbf{0} x=0 时, ∥ x ∥ 2 = 0 \| \mathbf{x} \|_2 = 0 x2=0

  2. 齐次性(正比例性):对于任何实数 α \alpha α,有 ∥ α x ∥ 2 = ∣ α ∣ ∥ x ∥ 2 \| \alpha \mathbf{x} \|_2 = |\alpha| \| \mathbf{x} \|_2 αx2=α∣∥x2

  3. 三角不等式:对于任意向量 x , y \mathbf{x}, \mathbf{y} x,y,有
    ∥ x + y ∥ 2 ≤ ∥ x ∥ 2 + ∥ y ∥ 2 \| \mathbf{x} + \mathbf{y} \|_2 \leq \| \mathbf{x} \|_2 + \| \mathbf{y} \|_2 x+y2x2+y2

  4. 平移不变性:L2 范数只与向量的方向和长度有关,与其位置无关。


举例:

  • 二维向量:对于向量 x = ( 3 , 4 ) \mathbf{x} = (3, 4) x=(3,4),其 L2 范数为:
    ∥ x ∥ 2 = 3 2 + 4 2 = 9 + 16 = 5 \| \mathbf{x} \|_2 = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 x2=32+42 =9+16 =5

  • 三维向量:对于向量 x = ( 1 , 2 , 2 ) \mathbf{x} = (1, 2, 2) x=(1,2,2),其 L2 范数为:
    ∥ x ∥ 2 = 1 2 + 2 2 + 2 2 = 1 + 4 + 4 = 3 \| \mathbf{x} \|_2 = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = 3 x2=12+22+22 =1+4+4 =3


应用:

  1. 机器学习:在正则化方法中,如 Ridge 回归(岭回归),使用 L2 范数来防止过拟合。
  2. 优化算法:在许多优化问题中,L2 范数用于定义损失函数或约束条件。
  3. 信号处理:用于衡量信号的能量或误差大小。
  4. 计算机视觉:用于衡量图像或特征向量之间的相似度。

与其他范数的比较:

  • L1 范数:定义为向量各分量绝对值之和:
    ∥ x ∥ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x n ∣ \| \mathbf{x} \|_1 = |x_1| + |x_2| + \dots + |x_n| x1=x1+x2++xn

  • L∞ 范数:定义为向量各分量绝对值的最大值:
    ∥ x ∥ ∞ = max ⁡ { ∣ x 1 ∣ , ∣ x 2 ∣ , … , ∣ x n ∣ } \| \mathbf{x} \|_\infty = \max\{ |x_1|, |x_2|, \dots, |x_n| \} x=max{x1,x2,,xn}


总结:

L2 范数是衡量向量长度的标准方法,广泛应用于数学、物理和工程领域。它具有良好的数学性质,能有效地描述向量的特征和性质,是分析和计算中常用的工具。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值