什么是L2范数

定义:

在数学和计算中,L2 范数是一种用于测量向量长度或大小的方法,也被称为欧几里得范数。对于一个 n 维向量 x = ( x 1 , x 2 , … , x n ) \mathbf{x} = (x_1, x_2, \dots, x_n) x=(x1,x2,,xn),其 L2 范数定义为:
∥ x ∥ 2 = x 1 2 + x 2 2 + ⋯ + x n 2 \| \mathbf{x} \|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} x2=x12+x22++xn2


解释:

  • 几何意义:L2 范数表示从原点到向量终点的直线距离,即向量在欧几里得空间中的长度。
  • 计算方法:将向量各分量的平方求和,然后取平方根。

性质:

  1. 非负性 ∥ x ∥ 2 ≥ 0 \| \mathbf{x} \|_2 \geq 0 x20,且只有当 x = 0 \mathbf{x} = \mathbf{0} x=0 时, ∥ x ∥ 2 = 0 \| \mathbf{x} \|_2 = 0 x2=0

  2. 齐次性(正比例性):对于任何实数 α \alpha α,有 ∥ α x ∥ 2 = ∣ α ∣ ∥ x ∥ 2 \| \alpha \mathbf{x} \|_2 = |\alpha| \| \mathbf{x} \|_2 αx2=α∣∥x2

  3. 三角不等式:对于任意向量 x , y \mathbf{x}, \mathbf{y} x,y,有
    ∥ x + y ∥ 2 ≤ ∥ x ∥ 2 + ∥ y ∥ 2 \| \mathbf{x} + \mathbf{y} \|_2 \leq \| \mathbf{x} \|_2 + \| \mathbf{y} \|_2 x+y2x2+y2

  4. 平移不变性:L2 范数只与向量的方向和长度有关,与其位置无关。


举例:

  • 二维向量:对于向量 x = ( 3 , 4 ) \mathbf{x} = (3, 4) x=(3,4),其 L2 范数为:
    ∥ x ∥ 2 = 3 2 + 4 2 = 9 + 16 = 5 \| \mathbf{x} \|_2 = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 x2=32+42 =9+16 =5

  • 三维向量:对于向量 x = ( 1 , 2 , 2 ) \mathbf{x} = (1, 2, 2) x=(1,2,2),其 L2 范数为:
    ∥ x ∥ 2 = 1 2 + 2 2 + 2 2 = 1 + 4 + 4 = 3 \| \mathbf{x} \|_2 = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = 3 x2=12+22+22 =1+4+4 =3


应用:

  1. 机器学习:在正则化方法中,如 Ridge 回归(岭回归),使用 L2 范数来防止过拟合。
  2. 优化算法:在许多优化问题中,L2 范数用于定义损失函数或约束条件。
  3. 信号处理:用于衡量信号的能量或误差大小。
  4. 计算机视觉:用于衡量图像或特征向量之间的相似度。

与其他范数的比较:

  • L1 范数:定义为向量各分量绝对值之和:
    ∥ x ∥ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x n ∣ \| \mathbf{x} \|_1 = |x_1| + |x_2| + \dots + |x_n| x1=x1+x2++xn

  • L∞ 范数:定义为向量各分量绝对值的最大值:
    ∥ x ∥ ∞ = max ⁡ { ∣ x 1 ∣ , ∣ x 2 ∣ , … , ∣ x n ∣ } \| \mathbf{x} \|_\infty = \max\{ |x_1|, |x_2|, \dots, |x_n| \} x=max{x1,x2,,xn}


总结:

L2 范数是衡量向量长度的标准方法,广泛应用于数学、物理和工程领域。它具有良好的数学性质,能有效地描述向量的特征和性质,是分析和计算中常用的工具。

<think>嗯,用户想了解L1范数和L2范数。首先,我需要回忆一下这两个概念的定义和区别。L1范数应该就是向量各元素的绝对值之和,而L2范数是欧几里得范数,平方和的平方根。对吧? 接下来,得考虑用户可能的背景。他们可能是刚开始学习机器学习或者优化方面的内容,因为在正则化中经常用到L1和L2。所以需要解释清楚两者的数学形式和应用场景。 然后,用户可能需要知道两者的区别,比如稀疏性和鲁棒性。比如L1倾向于产生稀疏解,这在特征选择中有用,而L2防止过拟合,计算上更平滑。这部分需要详细说明,但要注意用例子帮助理解。 还有,应用实例部分,比如Lasso回归和Ridge回归,这会让用户更容易联系实际。同时,几何解释可能也有帮助,比如L1在二维空间是菱形,L2是圆形,这样约束下的最优点位置不同。 需要检查数学公式是否正确,按照用户的要求,行内公式用$...$,独立公式用$$...$$。比如L1是$\| \mathbf{x} \|_1 = \sum_{i=1}^n |x_i|$,L2是$\| \mathbf{x} \|_2 = \sqrt{\sum_{i=1}^n x_i^2}$。对吗? 还要注意语法正确,比如绝对值符号用|,平方根用\sqrt,向量用\mathbf。另外,是否需要提到其他范数,比如L0或Lp?可能不需要,用户只问了L1和L2。 可能需要提到计算上的差异,比如L2可导,容易优化,而L1在零点不可导,使用次梯度等方法。这也是为什么L1能产生稀疏解的原因,因为优化时会倾向于某些维度为零。 总结部分要对比两者的优缺点和应用场景,确保用户能根据需求选择。比如特征选择多选L1,防止过拟合选L2,或者结合成Elastic Net。 最后,检查结构是否清晰,分点是否明确,有没有使用中文术语准确,比如“正则化”、“稀疏解”、“过拟合”等。确保回答符合用户的要求,步骤清晰,帮助理解。</think>### L1范数与L2范数介绍 #### 1. **基本定义** - **L1范数**(曼哈顿范数): 对于向量 $\mathbf{x} = (x_1, x_2, \dots, x_n)$,L1范数是其各分量绝对值的和: $$\| \mathbf{x} \|_1 = \sum_{i=1}^n |x_i|$$ 例如:向量 $(3, -4)$ 的L1范数为 $|3| + |-4| = 7$。 - **L2范数**(欧几里得范数): L2范数是向量各分量平方和的平方根: $$\| \mathbf{x} \|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$ 例如:向量 $(3, 4)$ 的L2范数为 $\sqrt{3^2 + 4^2} = 5$。 --- #### 2. **几何意义** - **L1范数**在几何上表现为“菱形”或“钻石形”边界(二维时)。 **L2范数**表现为“圆形”边界(二维时),高维时为超球面。 **示例**:若约束条件为 $\| \mathbf{x} \|_1 \leq 1$,解集是顶点在坐标轴上的菱形;若为 $\| \mathbf{x} \|_2 \leq 1$,解集是一个圆。 --- #### 3. **特性对比** | 特性 | L1范数 | L2范数 | |---------------------|--------------------------------|--------------------------------| | **稀疏性** | 倾向于产生稀疏解(部分分量为0) | 通常产生非稀疏解 | | **计算复杂度** | 优化时需用特殊方法(如坐标下降)| 可导,易于梯度下降等优化算法 | | **抗噪声能力** | 对离群值更鲁棒 | 对离群值敏感 | | **几何边界平滑性** | 有尖角(非光滑) | 光滑 | --- #### 4. **典型应用场景** - **L1范数**: - **特征选择**:如Lasso回归($ \min \| \mathbf{y} - X\mathbf{\beta} \|_2^2 + \lambda \| \mathbf{\beta} \|_1 $),通过稀疏性筛选重要特征。 - **鲁棒回归**:在噪声较多时减少异常点影响。 - **L2范数**: - **防止过拟合**:如Ridge回归($ \min \| \mathbf{y} - X\mathbf{\beta} \|_2^2 + \lambda \| \mathbf{\beta} \|_2^2 $),通过平滑约束降低模型复杂度。 - **物理意义明确**:常用于距离、能量等场景。 --- #### 5. **直观理解示例** - **稀疏性示例**: 假设优化问题要求 $\mathbf{\beta}$ 满足 $\| \mathbf{\beta} \|_1 \leq t$,最优解可能在坐标轴上(即某些分量为0);而L2约束的最优解更可能接近原点但不严格为0。 - **几何优化示例**: 下图展示在约束 $\| \mathbf{\beta} \|_1 \leq t$(蓝色菱形)和 $\| \mathbf{\beta} \|_2 \leq t$(红色圆)下,损失函数等高线(椭圆)的最优解(交点): - L1的解更可能位于顶点(稀疏),L2的解位于边界某点(非稀疏)。 --- #### 6. **总结** - **选择依据**: - 需要特征选择或稀疏性 → **L1范数**(如Lasso)。 - 需要平滑解或避免过拟合 → **L2范数**(如Ridge)。 - 二者结合 → **弹性网络(Elastic Net)**(同时用L1和L2正则化)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值