什么是范数

范数(Norm) 是数学中衡量向量大小的一个工具。它用于计算向量的长度或大小,是向量空间中的一种度量方式。在机器学习和神经网络中,范数常用于正则化,以防止模型过拟合,并用于优化过程中评估梯度。

常见范数类型:

  1. L1 范数(曼哈顿范数 / 稀疏范数)
  2. L2 范数(欧几里得范数)
  3. L∞ 范数(最大范数)
1. L1 范数

L1 范数是向量中每个元素的绝对值之和。

公式:
∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ ||\mathbf{x}||_1 = \sum_{i=1}^{n} |x_i| ∣∣x1=i=1nxi
其中, x i x_i xi 是向量 x \mathbf{x} x 的第 i i i 个分量。

计算示例:
给定向量 x = [ 3 , − 4 , 1 ] \mathbf{x} = [3, -4, 1] x=[3,4,1]
∣ ∣ x ∣ ∣ 1 = ∣ 3 ∣ + ∣ − 4 ∣ + ∣ 1 ∣ = 3 + 4 + 1 = 8 ||\mathbf{x}||_1 = |3| + |-4| + |1| = 3 + 4 + 1 = 8 ∣∣x1=∣3∣+4∣+∣1∣=3+4+1=8

2. L2 范数

L2 范数是向量中每个元素平方和的平方根,通常用于计算向量的欧几里得距离。

公式:
∣ ∣ x ∣ ∣ 2 = ∑ i = 1 n x i 2 ||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^{n} x_i^2} ∣∣x2=i=1nxi2

计算示例:
给定向量 x = [ 3 , − 4 , 1 ] \mathbf{x} = [3, -4, 1] x=[3,4,1]
∣ ∣ x ∣ ∣ 2 = 3 2 + ( − 4 ) 2 + 1 2 = 9 + 16 + 1 = 26 ≈ 5.1 ||\mathbf{x}||_2 = \sqrt{3^2 + (-4)^2 + 1^2} = \sqrt{9 + 16 + 1} = \sqrt{26} \approx 5.1 ∣∣x2=32+(4)2+12 =9+16+1 =26 5.1

3. L∞ 范数(最大范数)

L∞ 范数是向量中元素绝对值的最大值。

公式:
∣ ∣ x ∣ ∣ ∞ = max ⁡ ( ∣ x 1 ∣ , ∣ x 2 ∣ , … , ∣ x n ∣ ) ||\mathbf{x}||_\infty = \max(|x_1|, |x_2|, \dots, |x_n|) ∣∣x=max(x1,x2,,xn)

计算示例:
给定向量 x = [ 3 , − 4 , 1 ] \mathbf{x} = [3, -4, 1] x=[3,4,1]
∣ ∣ x ∣ ∣ ∞ = max ⁡ ( ∣ 3 ∣ , ∣ − 4 ∣ , ∣ 1 ∣ ) = 4 ||\mathbf{x}||_\infty = \max(|3|, |-4|, |1|) = 4 ∣∣x=max(∣3∣,4∣,∣1∣)=4

范数的意义和用途:

  1. L1 范数:常用于稀疏模型的正则化(如 Lasso 回归),有助于特征选择,因为它倾向于使某些特征的系数变为零,从而形成稀疏解。
  2. L2 范数:用于欧几里得距离和正则化(如 Ridge 回归、神经网络中的权重衰减),通过惩罚大的权重来防止过拟合。
  3. L∞ 范数:有时用于优化问题,特别是在涉及最大误差或最大距离时。

总结:

  • L1 范数 计算向量元素的绝对值之和,强调稀疏性。
  • L2 范数 计算向量的欧几里得长度,强调整体距离。
  • L∞ 范数 取向量元素的最大绝对值,强调极值。

这些范数广泛应用于机器学习中的正则化方法以及优化问题中,用于控制模型的复杂度和防止过拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值