什么是范数(Norm),其具有哪些性质

本文介绍了向量的范数概念,包括1范数、2范数、p范数和无穷范数,并提供了直观的二维边界图像。范数具有正定性、齐次性和三角不等式等性质,且不同范数对应不同的几何形状,如1范数形成菱形,2范数形成圆形。此外,文章还探讨了在三维空间中范数的图像变化规律。
摘要由CSDN通过智能技术生成

直观的感受一下范数

先直观的感受一下二维空间的范数,假设在二维空间的向量为 v = ( x , y ) \bold{v} =(x,y) v=(x,y)

则v的1范数为

∣ ∣ v ∣ ∣ 1 = ∣ ∣ ( x , y ) ∣ ∣ 1 = ∣ x ∣ + ∣ y ∣ = ( ∣ x ∣ 1 + ∣ y ∣ 1 ) 1 1 ||\bold{v}||_1 =||(x,y)||_1 = |x| + |y| = (|x|^1+|y|^1)^\frac{1}{1} v1=(x,y)1=x+y=(x1+y1)11

v的2范数为

∣ ∣ v ∣ ∣ 2 = ∣ ∣ ( x , y ) ∣ ∣ 2 = ∣ x ∣ 2 + ∣ y ∣ 2 = ( ∣ x ∣ 2 + ∣ y ∣ 2 ) 1 2 ||\bold{v}||_2 =||(x,y)||_2 = \sqrt{|x|^2 + |y|^2} = (|x|^2+|y|^2)^\frac{1}{2} v2=(x,y)2=x2+y2 =(x2+y2)21

v的3范数为

∣ ∣ v ∣ ∣ 3 = ∣ ∣ ( x , y ) ∣ ∣ 3 = ∣ x ∣ 3 + ∣ y ∣ 3 3 = ( ∣ x ∣ 3 + ∣ y ∣ 3 ) 1 3 ||\bold{v}||_3 =||(x,y)||_3 = \sqrt[3]{|x|^3 + |y|^3} = (|x|^3+|y|^3)^\frac{1}{3} v3=(x,y)3=3x3+y3 =(x3+y3)31

推广后,得v的p范数为

∣ ∣ v ∣ ∣ p = ∣ ∣ ( x , y ) ∣ ∣ p = ∣ x ∣ p + ∣ y ∣ p p = ( ∣ x ∣ p + ∣ y ∣ p ) 1 p ||\bold{v}||_p =||(x,y)||_p = \sqrt[p]{|x|^p + |y|^p} = (|x|^p+|y|^p)^\frac{1}{p} vp=(x,y)p=pxp+yp =(xp+yp)p1

p = ∞ p=\infin p= 时,有些区别,v的无穷范数为

∣ ∣ v ∣ ∣ ∞ = ∣ ∣ ( x , y ) ∣ ∣ ∞ = m a x ( ∣ x ∣ , ∣ y ∣ ) ||\bold{v}||_\infin =||(x,y)||_\infin = max(|x|, |y|) v=(x,y)=max(x,y)

为无穷范数时,是从x,y的绝对值中挑出一个大的

范数的定义

感受过二维向量的范数后,将其扩展到n维向量后,向量 x x x的范数为:

向量 x x x1范数

∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ ||x||_1 = \sum_{i=1}^n|x_i| x1=i=1nxi

向量 x x x2范数
∣ ∣ x ∣ ∣ 2 = ( ∑ i = 1 n ∣ x i ∣ 2 ) 1 2 ||x||_2 = (\sum_{i=1}^n|x_i|^2)^\frac{1}{2} x2=(i=1nxi2)21

向量 x x xp范数
∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p      1 ≤ p < ∞ ||x||_p = (\sum_{i=1}^n|x_i|^p)^\frac{1}{p} ~~~~ 1 \le p < \infin xp=(i=1nxip)p1    1p<

注意p的范围:①p不能等于无穷,对于无穷范数有额外的定义;②p可以是小数

向量 x x x无穷范数

∥ x ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| x=1inmaxxi

直观的感受下范数的边界图像

定义范数后,可以直观的感受下二维范数的边界图像,即 ∥ ( x , y ) ∥ p ≤ 1 \|(x,y)\|_p\le1 (x,y)p1 的函数图像。

1范数时的边界图像( ∣ x ∣ + ∣ y ∣ = 1 |x|+|y|=1 x+y=1 的图像)为:
在这里插入图片描述

菱形边界是函数 ∣ x ∣ + ∣ y ∣ = 1 |x|+|y|=1 x+y=1 函数图像,菱形内部满足 ∣ x ∣ + ∣ y ∣ < 1 |x|+|y| < 1 x+y<1。其他范数同理

2范数时的边界图像( ∣ x ∣ 2 + ∣ y ∣ 2 = 1 \sqrt{|x|^2+|y|^2}=1 x2+y2 =1 的图像)为:

在这里插入图片描述

可以通过GeoGebra p-norm ball,自己感受下不同范数下的边界图像

通过感受不同范数的图像最终可以发现如下图所示的规律,即范数越大,图像越方。同时容易明白,为什么二维无穷范数的定义是 m a x ( ∣ x ∣ , ∣ y ∣ ) max(|x|, |y|) max(x,y)
在这里插入图片描述

对于三维空间,那就是遵循下图的变化:
在这里插入图片描述

范数的性质

  1. 正定型: ∥ x ∥ ≥ 0 \|x\| \ge0 x0 ,当且仅当 x = 0 x=0 x=0时, ∥ x ∥ = 0 \|x\|=0 x=0
  2. 齐次性: ∥ λ x ∥ = ∣ λ ∣ ∥ x ∥ \|\lambda x\|=|\lambda|\|x\| λx=λx, 其中 λ ∈ R \lambda \in R λR
  3. 三角不等式: ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ , ∀ x , y ∈ C n \|x+y\| \leq\|x\|+\|y\|, \forall x, y \in C^{n} x+yx+y,x,yCn
  4. ∥ 0 ∥ = 0 \|0\|=0 0=0
  5. x ≠ 0 x\neq0 x=0 时, ∥ 1 ∥ x ∥ x ∥ = 1 \|\frac{1}{\|x\|}x \|=1 x1x=1
  6. 对任意的 x ∈ C n x\in C^n xCn,有 ∥ − x ∥ = ∥ x ∥ \|-x\|=\|x\| x=x
  7. 对任意的 x , y ∈ C n x, y\in C^n x,yCn,有 ∣   ∥ x ∥ − ∥ y ∥   ∣ ≤ ∥ x − y ∥ |~\|x\|-\|y\|~| \le \|x-y\|  xy xy





参考资料

GeoGebra p-norm ball:https://www.geogebra.org/m/pyxfvyyk

第八课:向量的范数:https://zhuanlan.zhihu.com/p/30279795

  • 111
    点赞
  • 489
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论
### 回答1: 没问题,L1范数,又称绝对值范数,是一种范数,它将向量中所有元素的绝对值相加而得到的数值,其定义为:给定向量$\mathbf{x}=(x_1,x_2,\dots,x_n)$,其L1范数定义为:$$||\mathbf{x}||_1 = \sum_{i=1}^n|x_i|$$ ### 回答2: l1 norm,也被称为曼哈顿范数或绝对值范数,是一种向量的度量方式。对于一个向量来说,l1 norm 就是其各个元素绝对值的和。 举个例子来说,假设有一个二维向量 v = [3, -4]。我们可以计算其 l1 norm,将向量中每个元素取绝对值后相加:|3| + |-4| = 3 + 4 = 7。因此,向量 v 的 l1 norm 就是 7。 与 l1 norm 相对应的还有 l2 norm,也被称为欧几里得范数或平方和范数。不同于 l1 norm,l2 norm 是将向量的各个元素的平方和的平方根。 l1 norm 有一些特殊的性质,使其在某些情况下更适用于特定的问题。首先,l1 norm 鼓励向量中某些元素为零,从而产生稀疏性。这使得 l1 norm 在特征选择和稀疏表示等问题上得到广泛应用。其次,l1 norm 相对于离群值更为鲁棒,即对异常值的影响较小。此外,l1 norm 的优化问题相对于 l2 norm 的优化问题更容易求解,因为其具有较少的非光滑点。 总而言之,l1 norm 是一种常用的向量度量方式,其具有稀疏性、鲁棒性和易于优化求解等特点,使其在许多领域中得到广泛应用。 ### 回答3: L1范数是一种向量标准化的方法,也常用于正则化和特征选择等机器学习领域。 在数学上,L1范数又称为曼哈顿距离或绝对值范数。对于一个n维向量x=(x1, x2, ..., xn),它的L1范数定义为|x1| + |x2| + ... + |xn|,即所有元素的绝对值之和。可以将L1范数看作是向量中各元素绝对值的和。 与L2范数相比,L1范数的主要特点是对异常值更加敏感。当向量中存在极大或极小的数值时,L1范数会受到较大的影响,导致标准化结果受到异常值的干扰。 L1范数机器学习中有广泛应用。例如,在线性回归问题中,我们可以使用L1范数作为正则化项,通过最小化目标函数中的L1范数项来控制模型复杂度,达到特征选择的目的。由于L1范数趋向于将某些特征的权重归零,因此可以实现自动的特征选择,帮助我们找到最重要的特征,提高模型的解释性和泛化能力。 此外,L1范数还常用于稀疏表示和压缩感知等领域。由于L1范数的特性,它可以促使向量中的部分元素变为零,从而实现数据的压缩和降维。这一特点在信号处理和图像处理等领域有重要应用,例如图片压缩、图像稀疏表示等。 综上所述,L1范数在数学和机器学习中都具有重要作用,能够帮助我们进行特征选择、正则化、稀疏表示等任务。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值