一元二次函数的最值公式

一元二次函数的标准形式为:

f ( x ) = a x 2 + b x + c f(x) = ax^2 + bx + c f(x)=ax2+bx+c

其中, a a a b b b c c c 是常数,且 a ≠ 0 a \neq 0 a=0

一元二次函数的最值公式

一元二次函数的最值与二次项系数 a a a 的符号有关:

  1. a > 0 a > 0 a>0 时,抛物线开口向上,函数有最小值
  2. a < 0 a < 0 a<0 时,抛物线开口向下,函数有最大值

最值的具体公式

对于一元二次函数 f ( x ) = a x 2 + b x + c f(x) = ax^2 + bx + c f(x)=ax2+bx+c,其在 x x x 轴上的对称轴为:

x = − b 2 a x = -\frac{b}{2a} x=2ab

函数在该点的取值(即最值)为:

f ( − b 2 a ) = a ( − b 2 a ) 2 + b ( − b 2 a ) + c f\left(-\frac{b}{2a}\right) = a\left(-\frac{b}{2a}\right)^2 + b\left(-\frac{b}{2a}\right) + c f(2ab)=a(2ab)2+b(2ab)+c

化简后,最值可以表示为:

f ( − b 2 a ) = 4 a c − b 2 4 a f\left(-\frac{b}{2a}\right) = \frac{4ac - b^2}{4a} f(2ab)=4a4acb2

总结

  • a > 0 a > 0 a>0 时,最小值为 4 a c − b 2 4 a \frac{4ac - b^2}{4a} 4a4acb2
  • a < 0 a < 0 a<0 时,最大值为 4 a c − b 2 4 a \frac{4ac - b^2}{4a} 4a4acb2
  • 最值对应的 x x x 值是 x = − b 2 a x = -\frac{b}{2a} x=2ab
内容概要:该论文研究了一种基于行波理论的输电线路故障诊断方法。当输电线路发生故障时,故障点会产生向两侧传播的电流和电压行波。通过相模变换对三相电流行波解耦,利用解耦后独立模量间的关系确定故障类型和相别,再采用小波变换模极大法标定行波波头,从而计算故障点距离。仿真结果表明,该方法能准确识别故障类型和相别,并对故障点定位具有高精度。研究使用MATLAB进行仿真验证,为输电线路故障诊断提供了有效解决方案。文中详细介绍了三相电流信号生成、相模变换(Clarke变换)、小波变换波头检测、故障诊断主流程以及结果可视化等步骤,并通过多个实例验证了方法的有效性和准确性。 适合人群:具备一定电力系统基础知识和编程能力的专业人士,特别是从事电力系统保护与控制领域的工程师和技术人员。 使用场景及目标:①适用于电力系统的故障检测与诊断;②能够快速准确地识别输电线路的故障类型、相别及故障点位置;③为电力系统的安全稳定运行提供技术支持,减少停电时间和损失。 其他说明:该方法不仅在理论上进行了深入探讨,还提供了完整的Python代码实现,便于读者理解和实践。此外,文中还讨论了行波理论的核心公式、三相线路行波解耦、行波测距实现等关键技术点,并针对工程应用给出了注意事项,如波速校准、采样率要求、噪声处理等。这使得该方法不仅具有学术价,也具有很强的实际应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值