求和符号双变量∑x,y xy公式的理解

公式 ∑ x , y x y \sum_{x, y} xy x,yxy 的含义取决于 x x x y y y 的具体取值范围以及它们之间的关系。一般来说,这种形式可以理解为对 x x x y y y 的所有组合依次求和,每个组合的贡献是 x y xy xy 的乘积。

1. 一般意义上的解释

∑ x , y x y \sum_{x, y} xy x,yxy

表示:

  1. 双重求和

    • 外层对 x x x 求和;
    • 内层对 y y y 求和。
  2. 逐一列出所有 ( x , y ) (x, y) (x,y) 组合

    • 计算每一对 ( x , y ) (x, y) (x,y) 组合的乘积 x y xy xy
    • 将所有乘积结果加总。

2. 举例说明

例子 1:离散值范围

假设 x ∈ { 1 , 2 } , y ∈ { 3 , 4 } x \in \{1, 2\}, y \in \{3, 4\} x{1,2},y{3,4}。则:
∑ x , y x y = ∑ x ∈ { 1 , 2 } ∑ y ∈ { 3 , 4 } x y \sum_{x, y} xy = \sum_{x \in \{1, 2\}} \sum_{y \in \{3, 4\}} xy x,yxy=x{1,2}y{3,4}xy

列出所有可能的 ( x , y ) (x, y) (x,y) 组合:

  • x = 1 , y = 3 → x y = 1 ⋅ 3 = 3 x = 1, y = 3 \rightarrow xy = 1 \cdot 3 = 3 x=1,y=3xy=13=3
  • x = 1 , y = 4 → x y = 1 ⋅ 4 = 4 x = 1, y = 4 \rightarrow xy = 1 \cdot 4 = 4 x=1,y=4xy=14=4
  • x = 2 , y = 3 → x y = 2 ⋅ 3 = 6 x = 2, y = 3 \rightarrow xy = 2 \cdot 3 = 6 x=2,y=3xy=23=6
  • x = 2 , y = 4 → x y = 2 ⋅ 4 = 8 x = 2, y = 4 \rightarrow xy = 2 \cdot 4 = 8 x=2,y=4xy=24=8

将这些乘积加总:
∑ x , y x y = 3 + 4 + 6 + 8 = 21 \sum_{x, y} xy = 3 + 4 + 6 + 8 = 21 x,yxy=3+4+6+8=21


例子 2:连续值范围

如果 x , y x, y x,y 是连续变量,且取值范围为 x ∈ [ 1 , 2 ] , y ∈ [ 3 , 4 ] x \in [1, 2], y \in [3, 4] x[1,2],y[3,4],则求和需要用积分表示:
∑ x , y x y → ∫ 1 2 ∫ 3 4 x y   d y   d x \sum_{x, y} xy \rightarrow \int_1^2 \int_3^4 xy \, dy \, dx x,yxy1234xydydx

逐步计算:

  1. y y y 积分
    ∫ 3 4 x y   d y = x ∫ 3 4 y   d y = x [ y 2 2 ] 3 4 = x ( 4 2 2 − 3 2 2 ) = x ⋅ 16 − 9 2 = x ⋅ 7 2 \int_3^4 xy \, dy = x \int_3^4 y \, dy = x \left[ \frac{y^2}{2} \right]_3^4 = x \left( \frac{4^2}{2} - \frac{3^2}{2} \right) = x \cdot \frac{16 - 9}{2} = x \cdot \frac{7}{2} 34xydy=x34ydy=x[2y2]34=x(242232)=x2169=x27

  2. x x x 积分
    ∫ 1 2 x ⋅ 7 2   d x = 7 2 ∫ 1 2 x   d x = 7 2 [ x 2 2 ] 1 2 = 7 2 ⋅ 4 − 1 2 = 7 2 ⋅ 3 2 = 21 4 \int_1^2 x \cdot \frac{7}{2} \, dx = \frac{7}{2} \int_1^2 x \, dx = \frac{7}{2} \left[ \frac{x^2}{2} \right]_1^2 = \frac{7}{2} \cdot \frac{4 - 1}{2} = \frac{7}{2} \cdot \frac{3}{2} = \frac{21}{4} 12x27dx=2712xdx=27[2x2]12=27241=2723=421

因此:
∑ x , y x y ≈ 21 4 \sum_{x, y} xy \approx \frac{21}{4} x,yxy421


3. 抽象层面的意义

∑ x , y x y \sum_{x, y} xy x,yxy 的实际含义和结果依赖于:

  1. 取值范围

    • x x x y y y 是离散变量还是连续变量?
    • 它们的取值范围是什么?
  2. 求和或积分的权重

    • 是否有权重?例如,如果 x , y x, y x,y 具有分布 P ( x , y ) P(x, y) P(x,y),那么:
      ∑ x , y x y → ∑ x , y x y P ( x , y ) \sum_{x, y} xy \rightarrow \sum_{x, y} xy P(x, y) x,yxyx,yxyP(x,y)
    • 这种情况表示 x y xy xy 的加权平均。
  3. 变量之间的独立性

    • 如果 x , y x, y x,y 独立,可以分解为:
      ∑ x , y x y = ( ∑ x x ) ( ∑ y y ) \sum_{x, y} xy = \left( \sum_x x \right) \left( \sum_y y \right) x,yxy=(xx)(yy)
    • 如果 x , y x, y x,y 有依赖关系,则需要依赖联合分布 P ( x , y ) P(x, y) P(x,y)

4. 典型场景的含义

1. 矩阵运算

在矩阵表示中, ∑ x , y x y \sum_{x, y} xy x,yxy 通常可以被解释为两个向量或矩阵的点积。例如:

  • x x x 是行向量, y y y 是列向量,则 ∑ x , y x y \sum_{x, y} xy x,yxy 是这两个向量点积的结果。
2. 期望计算

在概率论中, ∑ x , y x y P ( x , y ) \sum_{x, y} xy P(x, y) x,yxyP(x,y) 表示随机变量 X , Y X, Y X,Y 的联合期望:
E [ X Y ] = ∑ x , y x y P ( x , y ) \mathbb{E}[XY] = \sum_{x, y} xy P(x, y) E[XY]=x,yxyP(x,y)

3. 连续分布的积分

在连续分布下, ∑ x , y x y \sum_{x, y} xy x,yxy 对应积分:
∫ x ∫ y x y   P ( x , y )   d x   d y \int_x \int_y xy \, P(x, y) \, dx \, dy xyxyP(x,y)dxdy


5. 总结

  • ∑ x , y x y \sum_{x, y} xy x,yxy 表示对所有 x , y x, y x,y 组合的逐一求和,结果是这些组合的乘积的总和。
  • 理解这个公式的关键是搞清楚 x , y x, y x,y 的取值范围(离散或连续)、它们的分布性质(独立或相关)以及是否有权重。
  • 通过例子(离散、连续)可以直观理解其求和或积分过程,以及与实际应用的联系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值