公式 ∑ x , y x y \sum_{x, y} xy ∑x,yxy 的含义取决于 x x x 和 y y y 的具体取值范围以及它们之间的关系。一般来说,这种形式可以理解为对 x x x 和 y y y 的所有组合依次求和,每个组合的贡献是 x y xy xy 的乘积。
1. 一般意义上的解释
∑ x , y x y \sum_{x, y} xy x,y∑xy
表示:
-
双重求和:
- 外层对 x x x 求和;
- 内层对 y y y 求和。
-
逐一列出所有 ( x , y ) (x, y) (x,y) 组合:
- 计算每一对 ( x , y ) (x, y) (x,y) 组合的乘积 x y xy xy;
- 将所有乘积结果加总。
2. 举例说明
例子 1:离散值范围
假设
x
∈
{
1
,
2
}
,
y
∈
{
3
,
4
}
x \in \{1, 2\}, y \in \{3, 4\}
x∈{1,2},y∈{3,4}。则:
∑
x
,
y
x
y
=
∑
x
∈
{
1
,
2
}
∑
y
∈
{
3
,
4
}
x
y
\sum_{x, y} xy = \sum_{x \in \{1, 2\}} \sum_{y \in \{3, 4\}} xy
x,y∑xy=x∈{1,2}∑y∈{3,4}∑xy
列出所有可能的 ( x , y ) (x, y) (x,y) 组合:
- x = 1 , y = 3 → x y = 1 ⋅ 3 = 3 x = 1, y = 3 \rightarrow xy = 1 \cdot 3 = 3 x=1,y=3→xy=1⋅3=3
- x = 1 , y = 4 → x y = 1 ⋅ 4 = 4 x = 1, y = 4 \rightarrow xy = 1 \cdot 4 = 4 x=1,y=4→xy=1⋅4=4
- x = 2 , y = 3 → x y = 2 ⋅ 3 = 6 x = 2, y = 3 \rightarrow xy = 2 \cdot 3 = 6 x=2,y=3→xy=2⋅3=6
- x = 2 , y = 4 → x y = 2 ⋅ 4 = 8 x = 2, y = 4 \rightarrow xy = 2 \cdot 4 = 8 x=2,y=4→xy=2⋅4=8
将这些乘积加总:
∑
x
,
y
x
y
=
3
+
4
+
6
+
8
=
21
\sum_{x, y} xy = 3 + 4 + 6 + 8 = 21
x,y∑xy=3+4+6+8=21
例子 2:连续值范围
如果
x
,
y
x, y
x,y 是连续变量,且取值范围为
x
∈
[
1
,
2
]
,
y
∈
[
3
,
4
]
x \in [1, 2], y \in [3, 4]
x∈[1,2],y∈[3,4],则求和需要用积分表示:
∑
x
,
y
x
y
→
∫
1
2
∫
3
4
x
y
d
y
d
x
\sum_{x, y} xy \rightarrow \int_1^2 \int_3^4 xy \, dy \, dx
x,y∑xy→∫12∫34xydydx
逐步计算:
-
对 y y y 积分:
∫ 3 4 x y d y = x ∫ 3 4 y d y = x [ y 2 2 ] 3 4 = x ( 4 2 2 − 3 2 2 ) = x ⋅ 16 − 9 2 = x ⋅ 7 2 \int_3^4 xy \, dy = x \int_3^4 y \, dy = x \left[ \frac{y^2}{2} \right]_3^4 = x \left( \frac{4^2}{2} - \frac{3^2}{2} \right) = x \cdot \frac{16 - 9}{2} = x \cdot \frac{7}{2} ∫34xydy=x∫34ydy=x[2y2]34=x(242−232)=x⋅216−9=x⋅27 -
对 x x x 积分:
∫ 1 2 x ⋅ 7 2 d x = 7 2 ∫ 1 2 x d x = 7 2 [ x 2 2 ] 1 2 = 7 2 ⋅ 4 − 1 2 = 7 2 ⋅ 3 2 = 21 4 \int_1^2 x \cdot \frac{7}{2} \, dx = \frac{7}{2} \int_1^2 x \, dx = \frac{7}{2} \left[ \frac{x^2}{2} \right]_1^2 = \frac{7}{2} \cdot \frac{4 - 1}{2} = \frac{7}{2} \cdot \frac{3}{2} = \frac{21}{4} ∫12x⋅27dx=27∫12xdx=27[2x2]12=27⋅24−1=27⋅23=421
因此:
∑
x
,
y
x
y
≈
21
4
\sum_{x, y} xy \approx \frac{21}{4}
x,y∑xy≈421
3. 抽象层面的意义
∑ x , y x y \sum_{x, y} xy ∑x,yxy 的实际含义和结果依赖于:
-
取值范围:
- x x x 和 y y y 是离散变量还是连续变量?
- 它们的取值范围是什么?
-
求和或积分的权重:
- 是否有权重?例如,如果
x
,
y
x, y
x,y 具有分布
P
(
x
,
y
)
P(x, y)
P(x,y),那么:
∑ x , y x y → ∑ x , y x y P ( x , y ) \sum_{x, y} xy \rightarrow \sum_{x, y} xy P(x, y) x,y∑xy→x,y∑xyP(x,y) - 这种情况表示 x y xy xy 的加权平均。
- 是否有权重?例如,如果
x
,
y
x, y
x,y 具有分布
P
(
x
,
y
)
P(x, y)
P(x,y),那么:
-
变量之间的独立性:
- 如果
x
,
y
x, y
x,y 独立,可以分解为:
∑ x , y x y = ( ∑ x x ) ( ∑ y y ) \sum_{x, y} xy = \left( \sum_x x \right) \left( \sum_y y \right) x,y∑xy=(x∑x)(y∑y) - 如果 x , y x, y x,y 有依赖关系,则需要依赖联合分布 P ( x , y ) P(x, y) P(x,y)。
- 如果
x
,
y
x, y
x,y 独立,可以分解为:
4. 典型场景的含义
1. 矩阵运算
在矩阵表示中, ∑ x , y x y \sum_{x, y} xy ∑x,yxy 通常可以被解释为两个向量或矩阵的点积。例如:
- x x x 是行向量, y y y 是列向量,则 ∑ x , y x y \sum_{x, y} xy ∑x,yxy 是这两个向量点积的结果。
2. 期望计算
在概率论中,
∑
x
,
y
x
y
P
(
x
,
y
)
\sum_{x, y} xy P(x, y)
∑x,yxyP(x,y) 表示随机变量
X
,
Y
X, Y
X,Y 的联合期望:
E
[
X
Y
]
=
∑
x
,
y
x
y
P
(
x
,
y
)
\mathbb{E}[XY] = \sum_{x, y} xy P(x, y)
E[XY]=x,y∑xyP(x,y)
3. 连续分布的积分
在连续分布下,
∑
x
,
y
x
y
\sum_{x, y} xy
∑x,yxy 对应积分:
∫
x
∫
y
x
y
P
(
x
,
y
)
d
x
d
y
\int_x \int_y xy \, P(x, y) \, dx \, dy
∫x∫yxyP(x,y)dxdy
5. 总结
- ∑ x , y x y \sum_{x, y} xy ∑x,yxy 表示对所有 x , y x, y x,y 组合的逐一求和,结果是这些组合的乘积的总和。
- 理解这个公式的关键是搞清楚 x , y x, y x,y 的取值范围(离散或连续)、它们的分布性质(独立或相关)以及是否有权重。
- 通过例子(离散、连续)可以直观理解其求和或积分过程,以及与实际应用的联系。