伽马函数 ( Γ ( x ) \Gamma(x) Γ(x)) 是数学中非常重要的特殊函数,是阶乘函数在实数(甚至复数)范围内的扩展。它在概率论、统计学和许多数学领域中有广泛应用。
1. 定义
伽马函数定义为:
Γ
(
x
)
=
∫
0
∞
t
x
−
1
e
−
t
d
t
,
当
x
>
0
\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt, \quad \text{当 } x > 0
Γ(x)=∫0∞tx−1e−tdt,当 x>0
关键点:
- 定义域: Γ ( x ) \Gamma(x) Γ(x) 在 x > 0 x > 0 x>0 时有意义。
- 积分上限:从 0 0 0 到 ∞ \infty ∞,这是一个无穷积分。
- 核心部分:
- t x − 1 t^{x-1} tx−1:权重函数,决定伽马函数的增长速度。
- e − t e^{-t} e−t:指数衰减函数,确保积分在无穷远处收敛。
2. 特性
2.1 阶乘的推广
对于正整数
n
n
n,伽马函数和阶乘的关系为:
Γ
(
n
)
=
(
n
−
1
)
!
\Gamma(n) = (n-1)!
Γ(n)=(n−1)!
- 例如:
- Γ ( 1 ) = 0 ! = 1 \Gamma(1) = 0! = 1 Γ(1)=0!=1
- Γ ( 2 ) = 1 ! = 1 \Gamma(2) = 1! = 1 Γ(2)=1!=1
- Γ ( 3 ) = 2 ! = 2 \Gamma(3) = 2! = 2 Γ(3)=2!=2
2.2 对非整数的扩展
伽马函数能计算非整数值,例如
Γ
(
1
/
2
)
\Gamma(1/2)
Γ(1/2)。通过公式:
Γ
(
1
2
)
=
π
\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}
Γ(21)=π
2.3 递归性质
伽马函数具有以下递归关系:
Γ
(
x
+
1
)
=
x
⋅
Γ
(
x
)
\Gamma(x+1) = x \cdot \Gamma(x)
Γ(x+1)=x⋅Γ(x)
- 例如:
- Γ ( 3 ) = 2 ⋅ Γ ( 2 ) \Gamma(3) = 2 \cdot \Gamma(2) Γ(3)=2⋅Γ(2)
- Γ ( 2 ) = 1 ⋅ Γ ( 1 ) \Gamma(2) = 1 \cdot \Gamma(1) Γ(2)=1⋅Γ(1)
- 所以 Γ ( 3 ) = 2 ⋅ 1 ⋅ Γ ( 1 ) = 2 ⋅ 1 = 2 ! \Gamma(3) = 2 \cdot 1 \cdot \Gamma(1) = 2 \cdot 1 = 2! Γ(3)=2⋅1⋅Γ(1)=2⋅1=2!
2.4 特殊值
- Γ ( 1 ) = 1 \Gamma(1) = 1 Γ(1)=1
- Γ ( 1 / 2 ) = π \Gamma(1/2) = \sqrt{\pi} Γ(1/2)=π
- Γ ( n + 1 ) = n ! \Gamma(n+1) = n! Γ(n+1)=n!(对于正整数)
3. 伽马函数的图形和行为
- 在 x > 0 x > 0 x>0 的区域, Γ ( x ) \Gamma(x) Γ(x) 是一个连续函数。
- 随着 x x x 增加, Γ ( x ) \Gamma(x) Γ(x) 值会迅速增长。
- 当 x → 0 + x \to 0^+ x→0+, Γ ( x ) \Gamma(x) Γ(x) 会趋于无穷大。
4. 数值计算示例
示例 1: Γ ( 5 ) \Gamma(5) Γ(5)
Γ ( 5 ) = ( 5 − 1 ) ! = 4 ! = 24 \Gamma(5) = (5-1)! = 4! = 24 Γ(5)=(5−1)!=4!=24
示例 2: Γ ( 1 / 2 ) \Gamma(1/2) Γ(1/2)
利用定义或查表:
Γ
(
1
2
)
=
π
≈
1.772
\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \approx 1.772
Γ(21)=π≈1.772
示例 3: Γ ( 2.5 ) \Gamma(2.5) Γ(2.5)
利用递归关系:
Γ
(
2.5
)
=
1.5
⋅
Γ
(
1.5
)
\Gamma(2.5) = 1.5 \cdot \Gamma(1.5)
Γ(2.5)=1.5⋅Γ(1.5)
Γ
(
1.5
)
=
0.5
⋅
Γ
(
0.5
)
=
0.5
⋅
π
\Gamma(1.5) = 0.5 \cdot \Gamma(0.5) = 0.5 \cdot \sqrt{\pi}
Γ(1.5)=0.5⋅Γ(0.5)=0.5⋅π
代入:
Γ
(
2.5
)
=
1.5
⋅
0.5
⋅
π
=
0.75
⋅
π
≈
1.329
\Gamma(2.5) = 1.5 \cdot 0.5 \cdot \sqrt{\pi} = 0.75 \cdot \sqrt{\pi} \approx 1.329
Γ(2.5)=1.5⋅0.5⋅π=0.75⋅π≈1.329
5. 应用
5.1 概率分布
- Gamma 分布:伽马函数用于归一化概率密度函数。
- Beta 分布:Beta 分布的归一化常数中涉及伽马函数。
5.2 特殊函数
- Bessel 函数、Beta 函数等许多特殊函数的定义中包含伽马函数。
5.3 贝叶斯分析
伽马函数广泛用于推导概率分布的后验分布。
6. 总结
伽马函数的核心性质:
- 阶乘的推广( Γ ( n ) = ( n − 1 ) ! \Gamma(n) = (n-1)! Γ(n)=(n−1)!)。
- 对实数和复数的扩展。
- 应用广泛,特别是在概率分布中。