什么是标准正态分布

标准正态分布(Standard Normal Distribution)是正态分布中的一种特殊情况,它的均值为 0 0 0,方差为 1 1 1。标准正态分布是正态分布的标准化形式,是统计学和概率论中的一个重要分布。


1. 标准正态分布的定义

标准正态分布的概率密度函数(PDF)为:

p ( x ) = 1 2 π exp ⁡ ( − x 2 2 ) , − ∞ < x < ∞ p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \quad -\infty < x < \infty p(x)=2π 1exp(2x2),<x<

其中:

  • x x x:随机变量;
  • exp ⁡ ( − x 2 / 2 ) \exp(-x^2/2) exp(x2/2):指数部分决定了分布的形状;
  • 1 2 π \frac{1}{\sqrt{2\pi}} 2π 1:归一化常数,保证总概率为 1 1 1

2. 特征

  1. 均值和方差

    • 均值(期望) μ = 0 \mu = 0 μ=0
    • 方差 σ 2 = 1 \sigma^2 = 1 σ2=1
  2. 对称性
    标准正态分布是关于 x = 0 x = 0 x=0 对称的。

  3. 分布曲线

    • 钟形曲线,也称为高斯曲线
    • 曲线在 x = 0 x = 0 x=0 处最高,向两侧逐渐减小;
    • 越远离中心,概率密度越小。
  4. 性质

    • 总概率等于 1 1 1
      ∫ − ∞ ∞ 1 2 π exp ⁡ ( − x 2 2 ) d x = 1 \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = 1 2π 1exp(2x2)dx=1
    • 关于 0 0 0 的奇函数(如 x x x)的积分为 0 0 0
      ∫ − ∞ ∞ x ⋅ p ( x )   d x = 0 \int_{-\infty}^\infty x \cdot p(x) \, dx = 0 xp(x)dx=0

3. 图形示意

标准正态分布的曲线如下图所示:

  • 横轴为 x x x(随机变量取值);
  • 纵轴为概率密度 p ( x ) p(x) p(x)
  • 曲线中心对称,均值为 0 0 0,峰值位于 x = 0 x = 0 x=0

在这里插入图片描述


4. 标准正态分布的累积分布函数(CDF)

标准正态分布的累积分布函数表示随机变量 X X X 小于等于 x x x 的概率,定义为:

Φ ( x ) = ∫ − ∞ x 1 2 π exp ⁡ ( − t 2 2 ) d t \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt Φ(x)=x2π 1exp(2t2)dt


5. 标准正态分布的标准化

任意正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 可以通过标准化变换转化为标准正态分布:

Z = X − μ σ , Z ∼ N ( 0 , 1 ) Z = \frac{X - \mu}{\sigma}, \quad Z \sim N(0, 1) Z=σXμ,ZN(0,1)

这里:

  • X X X:原始随机变量;
  • μ \mu μ:原始分布的均值;
  • σ \sigma σ:原始分布的标准差;
  • Z Z Z:标准化后的变量,服从标准正态分布。

6. 应用

标准正态分布在统计学、机器学习和自然科学中有广泛应用,主要包括:

  • 假设检验和显著性检验;
  • Z分数计算,用于数据标准化;
  • 蒙特卡洛模拟中用作基础概率分布;
  • 机器学习中的概率模型,如高斯过程和贝叶斯方法。

总结

标准正态分布是均值为 0 0 0、方差为 1 1 1 的正态分布。其概率密度函数呈对称的钟形曲线,是统计学中最重要的分布之一,广泛用于数据分析、概率估计和模拟计算中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值