标准正态分布(Standard Normal Distribution)是正态分布中的一种特殊情况,它的均值为 0 0 0,方差为 1 1 1。标准正态分布是正态分布的标准化形式,是统计学和概率论中的一个重要分布。
1. 标准正态分布的定义
标准正态分布的概率密度函数(PDF)为:
p ( x ) = 1 2 π exp ( − x 2 2 ) , − ∞ < x < ∞ p(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right), \quad -\infty < x < \infty p(x)=2π1exp(−2x2),−∞<x<∞
其中:
- x x x:随机变量;
- exp ( − x 2 / 2 ) \exp(-x^2/2) exp(−x2/2):指数部分决定了分布的形状;
- 1 2 π \frac{1}{\sqrt{2\pi}} 2π1:归一化常数,保证总概率为 1 1 1。
2. 特征
-
均值和方差:
- 均值(期望): μ = 0 \mu = 0 μ=0
- 方差: σ 2 = 1 \sigma^2 = 1 σ2=1
-
对称性:
标准正态分布是关于 x = 0 x = 0 x=0 对称的。 -
分布曲线:
- 呈钟形曲线,也称为高斯曲线;
- 曲线在 x = 0 x = 0 x=0 处最高,向两侧逐渐减小;
- 越远离中心,概率密度越小。
-
性质:
- 总概率等于
1
1
1:
∫ − ∞ ∞ 1 2 π exp ( − x 2 2 ) d x = 1 \int_{-\infty}^\infty \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) dx = 1 ∫−∞∞2π1exp(−2x2)dx=1 - 关于
0
0
0 的奇函数(如
x
x
x)的积分为
0
0
0:
∫ − ∞ ∞ x ⋅ p ( x ) d x = 0 \int_{-\infty}^\infty x \cdot p(x) \, dx = 0 ∫−∞∞x⋅p(x)dx=0
- 总概率等于
1
1
1:
3. 图形示意
标准正态分布的曲线如下图所示:
- 横轴为 x x x(随机变量取值);
- 纵轴为概率密度 p ( x ) p(x) p(x);
- 曲线中心对称,均值为 0 0 0,峰值位于 x = 0 x = 0 x=0。
4. 标准正态分布的累积分布函数(CDF)
标准正态分布的累积分布函数表示随机变量 X X X 小于等于 x x x 的概率,定义为:
Φ ( x ) = ∫ − ∞ x 1 2 π exp ( − t 2 2 ) d t \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt Φ(x)=∫−∞x2π1exp(−2t2)dt
5. 标准正态分布的标准化
任意正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2) 可以通过标准化变换转化为标准正态分布:
Z = X − μ σ , Z ∼ N ( 0 , 1 ) Z = \frac{X - \mu}{\sigma}, \quad Z \sim N(0, 1) Z=σX−μ,Z∼N(0,1)
这里:
- X X X:原始随机变量;
- μ \mu μ:原始分布的均值;
- σ \sigma σ:原始分布的标准差;
- Z Z Z:标准化后的变量,服从标准正态分布。
6. 应用
标准正态分布在统计学、机器学习和自然科学中有广泛应用,主要包括:
- 假设检验和显著性检验;
- Z分数计算,用于数据标准化;
- 蒙特卡洛模拟中用作基础概率分布;
- 机器学习中的概率模型,如高斯过程和贝叶斯方法。
总结
标准正态分布是均值为 0 0 0、方差为 1 1 1 的正态分布。其概率密度函数呈对称的钟形曲线,是统计学中最重要的分布之一,广泛用于数据分析、概率估计和模拟计算中。