《机器学习方法》
作者:李航
出版时间:2022年
关于作者:李航
李航是中国著名的计算机科学家,尤其在人工智能、机器学习领域享有盛誉。他是清华大学计算机科学与技术系的教授,并且长期从事机器学习、数据挖掘和人工智能等方向的研究。李航教授出版了多本经典的计算机科学书籍,并且发表了大量有影响力的学术论文。他是中国机器学习领域的权威人物之一。
李航教授的《机器学习方法》是一本深入浅出、系统全面的机器学习教材,被广泛用于学术界和工程界。李航在书中不仅结合了大量经典算法的理论,还将机器学习方法应用到实践中,旨在帮助读者从理论到实践全面掌握机器学习的核心内容。
书籍简介
《机器学习方法》是一本面向有一定数学基础和编程能力的读者的机器学习教材。全书深入讨论了机器学习的各种经典方法和技术,包括监督学习、无监督学习、集成学习、图模型等,并且系统地介绍了每种方法的数学背景、实现技巧和实际应用。
本书的特色是紧密结合数学推导与实际应用,注重算法的理论分析和实践指导,书中对每个算法的数学原理都有详细讲解,同时配有相关的算法实现,适合那些有一定计算机背景的学习者。书中的内容既能为学术研究提供理论支撑,也能为工程实践提供应用指导。
核心内容
-
机器学习的基本概念
本书首先从机器学习的基本概念出发,讲解了机器学习的分类、主要任务以及它在不同领域的应用。作者介绍了监督学习、无监督学习、半监督学习等不同的学习类型,并对各类方法的优势和劣势进行了比较分析。 -
监督学习
本书详细介绍了监督学习的常见算法,包括线性回归、逻辑回归、支持向量机(SVM)、决策树、**k-近邻(KNN)**等。每个算法都包含数学推导、算法实现和典型应用,帮助读者理解每个算法的工作原理,并掌握其在不同场景下的应用。 -
无监督学习
本书在无监督学习部分详细介绍了常见的无监督学习方法,如K-means聚类、层次聚类、主成分分析(PCA)、**自组织映射(SOM)**等。这些方法帮助学习者从没有标签的数据中挖掘潜在的结构和模式。 -
集成学习
集成学习是提高机器学习模型性能的有效方法。本书详细讨论了集成学习的基本思想和方法,如Bagging、Boosting、AdaBoost、随机森林等,并结合实际案例展示了这些方法如何通过组合多个弱分类器来增强预测准确性。 -
支持向量机 (SVM)
作为机器学习中最重要的分类算法之一,支持向量机在本书中得到了详细的数学推导。书中不仅介绍了线性支持向量机的原理,还讲解了核函数的概念,扩展到非线性分类问题。通过对SVM的深入讲解,帮助读者理解其在高维空间中的优化过程。 -
图模型与贝叶斯学习
在图模型部分,书中介绍了马尔可夫随机场(MRF)、条件随机场(CRF)等图模型的基本概念和算法,探讨了它们在语音识别、图像处理等领域的应用。同时,书中还介绍了贝叶斯网络及其推理算法,帮助读者理解如何在不确定性条件下进行学习与推理。 -
深度学习简介
本书虽然没有像当代深度学习教材那样深入讲解神经网络,但也简要介绍了深度学习的基本概念,包括**多层感知器(MLP)和卷积神经网络(CNN)**的基本原理,为后续学习深度学习打下基础。 -
模型评估与优化
在机器学习中,如何评估模型的好坏至关重要。书中详细介绍了交叉验证、ROC曲线、AUC值等常用的评估方法。此外,还讨论了如何通过正则化、特征选择等技术优化模型的性能。
书籍结构与章节内容
-
第1章:机器学习概述
介绍了机器学习的基本定义、任务和应用,讨论了机器学习的不同类别及其特点。 -
第2章:线性回归
详细讲解了线性回归的基本思想,最小二乘法的推导以及如何使用梯度下降法优化模型。 -
第3章:逻辑回归
介绍了逻辑回归模型的推导和应用,并重点讲解了最大似然估计和交叉熵损失函数。 -
第4章:支持向量机
详细介绍了支持向量机的数学原理,包括其最优化问题、核方法以及SVM的多类别扩展。 -
第5章:决策树与随机森林
讨论了决策树的构建方法、剪枝技术,以及随机森林在集成学习中的应用。 -
第6章:K-近邻算法
介绍了KNN算法的原理,计算距离的方法,以及KNN的优缺点与应用。 -
第7章:无监督学习
讨论了K均值聚类、层次聚类、主成分分析(PCA)等无监督学习方法,帮助读者掌握数据降维与聚类技术。 -
第8章:集成学习
深入介绍了集成学习的基本原理,包括Bagging、Boosting等方法,分析它们如何提高学习模型的准确度。 -
第9章:图模型
本章介绍了图模型的基本概念,包括马尔可夫随机场(MRF)和条件随机场(CRF)的学习方法。 -
第10章:贝叶斯学习
讲解了贝叶斯推理的基本原理,包括贝叶斯网络及其在机器学习中的应用。 -
第11章:深度学习与神经网络
简要介绍了神经网络和深度学习的基础概念,以及卷积神经网络(CNN)和多层感知器(MLP)的原理。 -
第12章:模型评估与优化
介绍了如何评估机器学习模型的效果,讨论了交叉验证、ROC曲线、AUC值等评估标准。
推荐理由
-
深入的数学推导与实践结合
《机器学习方法》在讲解每个算法时,都提供了详细的数学推导,帮助读者理解算法背后的理论。同时,作者还结合了丰富的实践案例,帮助读者将理论应用到实际问题中。 -
全面覆盖机器学习核心算法
书中详细介绍了监督学习、无监督学习、集成学习等常见的机器学习方法,并且对每种方法都进行了系统的分析和讲解。它为读者提供了全面的机器学习知识框架,适合各个阶段的学习者。 -
适合理论研究与实际应用
本书既适合学术研究者,也适合从事实际应用的工程师。书中的算法深入到每一个细节,适合有一定数学基础的读者深入学习。 -
结构清晰,便于学习
书中的内容安排非常合理,从基本概念开始,逐步深入到复杂算法。每个章节的知识点都相互衔接,帮助读者循序渐进地掌握机器学习的核心思想。
总结
李航的《机器学习方法》是一本非常经典且深入的机器学习教材,适合有一定基础的读者学习。它不仅涵盖了机器学习的基本算法,还深入探讨了算法背后的数学原理,并结合实际案例帮助读者理解算法的应用。对于那些想要全面了解和掌握机器学习的读者来说,这本书是一本必读的经典之作。
![]() |
|