【图书推荐】《动手学深度学习 PyTorch版》(Dive into Deep Learning)

《动手学深度学习 PyTorch版》

作者:阿斯顿·张(Aston Zhang)等
出版时间:2023年

点击去京东购买《动手学深度学习 PyTorch版》


关于作者:阿斯顿·张

阿斯顿·张(Aston Zhang)是深度学习领域的知名学者和工程师,主要研究方向为深度学习和自然语言处理。他曾在华盛顿大学等著名学术机构工作,并在多个领域的学术研究和工业应用中积累了丰富经验。阿斯顿·张是《动手学深度学习》系列书籍的主编之一,该书的中文版由人民邮电出版社出版,并在深度学习教学中广泛使用。

《动手学深度学习 PyTorch版》是基于阿斯顿·张的深度学习课程改编的,结合了深度学习的理论知识与实践,尤其注重通过PyTorch框架的具体实现来帮助读者理解深度学习的核心概念。该书以其易懂的语言、丰富的实例和代码实践,广受学习者的喜爱,是深度学习自学者的经典之作。


书籍简介

《动手学深度学习 PyTorch版》是一本面向深度学习初学者的实用教材,旨在帮助读者掌握深度学习的基础知识和技能,并通过实践演练加深对算法的理解。书中通过清晰的理论讲解和具体的PyTorch代码示例,逐步引导读者了解深度学习中的各种基本算法、网络架构以及如何利用PyTorch构建、训练和部署深度学习模型。

本书从最基础的深度学习概念讲起,逐步引导读者深入学习卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)、强化学习等重要的深度学习技术,同时书中还提供了丰富的代码实现,读者可以通过动手实践,进一步掌握深度学习的核心技术。


核心内容
  1. 深度学习入门
    本书从深度学习的基本概念入手,介绍了神经网络、反向传播、激活函数等基础内容。通过简单的例子讲解了神经网络的训练过程,并通过PyTorch框架来实现神经网络模型,帮助读者快速入门深度学习。

  2. 神经网络与PyTorch基础
    本书详细介绍了PyTorch框架的基本使用方法,涵盖了张量操作、自动微分、模型定义与训练等基本内容。通过具体代码示例,帮助读者理解如何用PyTorch实现神经网络模型,并进行调试与优化。

  3. 多层感知器(MLP)
    书中深入讨论了多层感知器(MLP),它是最简单的神经网络模型之一。通过对MLP模型的实现,读者可以掌握如何构建并训练一个基础的前馈神经网络。

  4. 卷积神经网络(CNN)
    本书重点介绍了卷积神经网络(CNN)的核心原理,涵盖了卷积层、池化层、激活函数等基本组成部分,并通过PyTorch实现了一个简单的CNN模型。通过实例,读者可以理解CNN如何在图像分类、物体检测等任务中应用。

  5. 循环神经网络(RNN)与长短期记忆网络(LSTM)
    书中对**循环神经网络(RNN)长短期记忆网络(LSTM)**进行了详细讲解。这些网络特别适合处理序列数据,如语音、文本等。通过代码示例,读者可以理解RNN和LSTM的工作原理,以及它们在自然语言处理、时间序列预测等任务中的应用。

  6. 生成对抗网络(GAN)
    本书介绍了**生成对抗网络(GAN)**的基本概念与实现。通过代码示例,帮助读者理解GAN如何通过生成器与判别器的博弈过程生成数据,并探讨了GAN在图像生成、图像修复等领域的应用。

  7. 强化学习
    书中简要介绍了强化学习的基本概念,并提供了基于PyTorch的强化学习代码示例,帮助读者理解如何训练智能体在环境中做出决策。强化学习的经典算法如Q-learning和策略梯度法等也在书中有所提及。

  8. 深度学习模型优化与调优
    本书还讨论了如何对深度学习模型进行优化与调优,包括超参数调节、正则化方法(如Dropout、L2正则化)、优化算法(如Adam、SGD等)以及如何利用GPU加速训练等技术。

  9. 模型部署与应用
    本书还简要介绍了如何将深度学习模型部署到生产环境中,涵盖了模型导出、推理优化等内容,帮助读者了解如何将训练好的模型应用到实际问题中。


书籍结构与章节内容
  1. 第1章:深度学习概述
    介绍了深度学习的背景、基本概念以及与传统机器学习的区别,帮助读者了解深度学习的基本框架。

  2. 第2章:PyTorch基础
    本章详细介绍了PyTorch的基本概念、张量操作、自动微分等内容,帮助读者熟悉框架的基础。

  3. 第3章:神经网络基础
    介绍了神经网络的基本组成部分,如感知器、激活函数、损失函数等,并通过PyTorch实现了简单的神经网络模型。

  4. 第4章:卷积神经网络(CNN)
    详细讲解了卷积神经网络的原理,并通过PyTorch实现了图像分类任务中的CNN模型。

  5. 第5章:循环神经网络(RNN)与LSTM
    介绍了循环神经网络及其变种——长短期记忆网络(LSTM),以及如何使用它们处理序列数据。

  6. 第6章:生成对抗网络(GAN)
    本章介绍了生成对抗网络的基本原理及其实现,帮助读者了解GAN的工作方式。

  7. 第7章:强化学习
    简要介绍了强化学习的基本概念及其算法,并通过PyTorch实现了简单的强化学习任务。

  8. 第8章:深度学习模型的优化与调优
    介绍了模型优化和调优的方法,如学习率调节、正则化、批归一化等,帮助读者提升模型的表现。

  9. 第9章:深度学习应用与模型部署
    讲解了深度学习模型的部署和应用,帮助读者了解如何将训练好的模型投入实际使用。


推荐理由
  1. 深度学习与PyTorch结合
    本书的最大特色是将深度学习的核心概念与PyTorch框架结合,读者不仅能学习到深度学习的理论,还能通过动手实践掌握PyTorch的应用。这种理论与实践的结合,能帮助读者更好地理解深度学习的细节。

  2. 从基础到进阶的全方位学习
    本书内容从基础的神经网络介绍到复杂的生成对抗网络(GAN)和强化学习,涵盖了深度学习的多个重要领域。无论是初学者还是有一定经验的学习者,都能从中找到适合自己的学习内容。

  3. 大量代码示例
    书中配有丰富的PyTorch代码示例,读者可以通过直接运行这些代码,加深对深度学习算法的理解。同时,代码中的注释和解释也帮助读者更好地理解每一行代码的作用。

  4. 适合自学和教学使用
    这本书不仅适合自学使用,也适合作为高校和培训机构的深度学习教材。书中的结构清晰、内容全面,适合分阶段学习,帮助读者从入门到深入掌握深度学习的核心技术。


总结

《动手学深度学习 PyTorch版》是一本非常适合深度学习初学者的教材,它通过详细的理论讲解与丰富的实践案例,帮助读者逐步掌握深度学习的基本概念和技术。特别是通过PyTorch框架,读者能够动手实现各种深度学习模型,理解其背后的数学原理,并能运用这些知识解决实际问题。无论你是深度学习的初学者,还是希望深入掌握该领域的研究者,这本书都是不可多得的宝贵资源。

书籍封面
二维码
点击立即去京东购买
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值