《动手学深度学习 PyTorch版》
作者:阿斯顿·张(Aston Zhang)等
出版时间:2023年
关于作者:阿斯顿·张
阿斯顿·张(Aston Zhang)是深度学习领域的知名学者和工程师,主要研究方向为深度学习和自然语言处理。他曾在华盛顿大学等著名学术机构工作,并在多个领域的学术研究和工业应用中积累了丰富经验。阿斯顿·张是《动手学深度学习》系列书籍的主编之一,该书的中文版由人民邮电出版社出版,并在深度学习教学中广泛使用。
《动手学深度学习 PyTorch版》是基于阿斯顿·张的深度学习课程改编的,结合了深度学习的理论知识与实践,尤其注重通过PyTorch框架的具体实现来帮助读者理解深度学习的核心概念。该书以其易懂的语言、丰富的实例和代码实践,广受学习者的喜爱,是深度学习自学者的经典之作。
书籍简介
《动手学深度学习 PyTorch版》是一本面向深度学习初学者的实用教材,旨在帮助读者掌握深度学习的基础知识和技能,并通过实践演练加深对算法的理解。书中通过清晰的理论讲解和具体的PyTorch代码示例,逐步引导读者了解深度学习中的各种基本算法、网络架构以及如何利用PyTorch构建、训练和部署深度学习模型。
本书从最基础的深度学习概念讲起,逐步引导读者深入学习卷积神经网络(CNN)、循环神经网络(RNN)、生成对抗网络(GAN)、强化学习等重要的深度学习技术,同时书中还提供了丰富的代码实现,读者可以通过动手实践,进一步掌握深度学习的核心技术。
核心内容
-
深度学习入门
本书从深度学习的基本概念入手,介绍了神经网络、反向传播、激活函数等基础内容。通过简单的例子讲解了神经网络的训练过程,并通过PyTorch框架来实现神经网络模型,帮助读者快速入门深度学习。 -
神经网络与PyTorch基础
本书详细介绍了PyTorch框架的基本使用方法,涵盖了张量操作、自动微分、模型定义与训练等基本内容。通过具体代码示例,帮助读者理解如何用PyTorch实现神经网络模型,并进行调试与优化。 -
多层感知器(MLP)
书中深入讨论了多层感知器(MLP),它是最简单的神经网络模型之一。通过对MLP模型的实现,读者可以掌握如何构建并训练一个基础的前馈神经网络。 -
卷积神经网络(CNN)
本书重点介绍了卷积神经网络(CNN)的核心原理,涵盖了卷积层、池化层、激活函数等基本组成部分,并通过PyTorch实现了一个简单的CNN模型。通过实例,读者可以理解CNN如何在图像分类、物体检测等任务中应用。 -
循环神经网络(RNN)与长短期记忆网络(LSTM)
书中对**循环神经网络(RNN)和长短期记忆网络(LSTM)**进行了详细讲解。这些网络特别适合处理序列数据,如语音、文本等。通过代码示例,读者可以理解RNN和LSTM的工作原理,以及它们在自然语言处理、时间序列预测等任务中的应用。 -
生成对抗网络(GAN)
本书介绍了**生成对抗网络(GAN)**的基本概念与实现。通过代码示例,帮助读者理解GAN如何通过生成器与判别器的博弈过程生成数据,并探讨了GAN在图像生成、图像修复等领域的应用。 -
强化学习
书中简要介绍了强化学习的基本概念,并提供了基于PyTorch的强化学习代码示例,帮助读者理解如何训练智能体在环境中做出决策。强化学习的经典算法如Q-learning和策略梯度法等也在书中有所提及。 -
深度学习模型优化与调优
本书还讨论了如何对深度学习模型进行优化与调优,包括超参数调节、正则化方法(如Dropout、L2正则化)、优化算法(如Adam、SGD等)以及如何利用GPU加速训练等技术。 -
模型部署与应用
本书还简要介绍了如何将深度学习模型部署到生产环境中,涵盖了模型导出、推理优化等内容,帮助读者了解如何将训练好的模型应用到实际问题中。
书籍结构与章节内容
-
第1章:深度学习概述
介绍了深度学习的背景、基本概念以及与传统机器学习的区别,帮助读者了解深度学习的基本框架。 -
第2章:PyTorch基础
本章详细介绍了PyTorch的基本概念、张量操作、自动微分等内容,帮助读者熟悉框架的基础。 -
第3章:神经网络基础
介绍了神经网络的基本组成部分,如感知器、激活函数、损失函数等,并通过PyTorch实现了简单的神经网络模型。 -
第4章:卷积神经网络(CNN)
详细讲解了卷积神经网络的原理,并通过PyTorch实现了图像分类任务中的CNN模型。 -
第5章:循环神经网络(RNN)与LSTM
介绍了循环神经网络及其变种——长短期记忆网络(LSTM),以及如何使用它们处理序列数据。 -
第6章:生成对抗网络(GAN)
本章介绍了生成对抗网络的基本原理及其实现,帮助读者了解GAN的工作方式。 -
第7章:强化学习
简要介绍了强化学习的基本概念及其算法,并通过PyTorch实现了简单的强化学习任务。 -
第8章:深度学习模型的优化与调优
介绍了模型优化和调优的方法,如学习率调节、正则化、批归一化等,帮助读者提升模型的表现。 -
第9章:深度学习应用与模型部署
讲解了深度学习模型的部署和应用,帮助读者了解如何将训练好的模型投入实际使用。
推荐理由
-
深度学习与PyTorch结合
本书的最大特色是将深度学习的核心概念与PyTorch框架结合,读者不仅能学习到深度学习的理论,还能通过动手实践掌握PyTorch的应用。这种理论与实践的结合,能帮助读者更好地理解深度学习的细节。 -
从基础到进阶的全方位学习
本书内容从基础的神经网络介绍到复杂的生成对抗网络(GAN)和强化学习,涵盖了深度学习的多个重要领域。无论是初学者还是有一定经验的学习者,都能从中找到适合自己的学习内容。 -
大量代码示例
书中配有丰富的PyTorch代码示例,读者可以通过直接运行这些代码,加深对深度学习算法的理解。同时,代码中的注释和解释也帮助读者更好地理解每一行代码的作用。 -
适合自学和教学使用
这本书不仅适合自学使用,也适合作为高校和培训机构的深度学习教材。书中的结构清晰、内容全面,适合分阶段学习,帮助读者从入门到深入掌握深度学习的核心技术。
总结
《动手学深度学习 PyTorch版》是一本非常适合深度学习初学者的教材,它通过详细的理论讲解与丰富的实践案例,帮助读者逐步掌握深度学习的基本概念和技术。特别是通过PyTorch框架,读者能够动手实现各种深度学习模型,理解其背后的数学原理,并能运用这些知识解决实际问题。无论你是深度学习的初学者,还是希望深入掌握该领域的研究者,这本书都是不可多得的宝贵资源。
![]() |
|