【scikit-learn】sklearn.tree 模块: 决策树(Decision Tree)

sklearn.tree 模块

sklearn.tree 提供了 决策树(Decision Tree) 模型,支持 分类(Classification)和回归(Regression) 任务,常用于 模式识别、特征选择和可解释性分析


1. sklearn.tree 主要模型

任务模型适用情况
分类DecisionTreeClassifier适用于分类任务
回归DecisionTreeRegressor适用于回归任务
可视化plot_tree()绘制决策树结构
导出export_text()以文本格式导出决策树

2. 决策树分类

(1) DecisionTreeClassifier(决策树分类)

from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

# 加载数据
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)

# 训练决策树分类器
model = DecisionTreeClassifier(max_depth=3, random_state=42)
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = model.score(X_test, y_test)
print("准确率:", accuracy)

解释

  • max_depth=3 限制决策树深度,防止过拟合。
  • random_state=42 保持随机性一致性。
  • score() 计算测试集准确率

3. 决策树回归

(2) DecisionTreeRegressor(决策树回归)

from sklearn.tree import DecisionTreeRegressor
from sklearn.datasets import make_regression
import matplotlib.pyplot as plt

# 生成回归数据
X, y = make_regression(n_samples=100, n_features=1, noise=10, random_state=42)

# 训练决策树回归模型
model = DecisionTreeRegressor(max_depth=3)
model.fit(X, y)

# 预测
y_pred = model.predict(X)

# 可视化
plt.scatter(X, y, label="真实数据")
plt.scatter(X, y_pred, color="red", label="决策树预测")
plt.legend()
plt.show()

解释

  • max_depth=3 限制树的深度,防止过拟合。
  • 适用于非线性回归任务,但 容易过拟合

4. DecisionTreeClassifier & DecisionTreeRegressor 主要参数

DecisionTreeClassifier(criterion="gini", max_depth=None, min_samples_split=2, min_samples_leaf=1, random_state=None)
DecisionTreeRegressor(criterion="squared_error", max_depth=None, min_samples_split=2, min_samples_leaf=1, random_state=None)
参数说明
criterion分类:"gini""entropy"(基尼系数/信息增益)
回归:"squared_error"(默认均方误差)
max_depth树的最大深度(默认 None,直到所有叶子纯净)
min_samples_split进行分裂的最小样本数(默认 2
min_samples_leaf叶子节点的最小样本数(默认 1
random_state随机种子,保证结果可复现

5. 决策树可视化

(3) plot_tree()

from sklearn.tree import plot_tree
import matplotlib.pyplot as plt

plt.figure(figsize=(12, 8))
plot_tree(model, feature_names=iris.feature_names, class_names=iris.target_names, filled=True)
plt.show()

解释

  • plot_tree() 可视化决策树结构,查看分裂情况。
  • filled=True 颜色填充,直观显示类别信息。

(4) export_text()

from sklearn.tree import export_text

tree_rules = export_text(model, feature_names=iris.feature_names)
print(tree_rules)

解释

  • 以文本格式导出决策树规则,适用于模型解释。

6. DecisionTreeClassifier vs. DecisionTreeRegressor

模型适用情况目标变量
DecisionTreeClassifier分类任务离散类别
DecisionTreeRegressor回归任务连续数值

示例

from sklearn.linear_model import LinearRegression

reg = LinearRegression().fit(X, y)
tree_reg = DecisionTreeRegressor(max_depth=3).fit(X, y)

print("线性回归预测:", reg.predict(X)[:5])
print("决策树回归预测:", tree_reg.predict(X)[:5])

解释

  • 线性回归适用于数值预测,决策树回归适用于非线性数据

7. 适用场景

  • 分类任务(如 垃圾邮件检测、信用评分)。
  • 回归任务(如 房价预测、股票趋势分析)。
  • 数据可解释性强的场景(决策树可以直接解释决策过程)。

8. 结论

  • sklearn.tree 提供了分类和回归任务的决策树模型,支持 可视化和文本导出
  • 如果 数据是分类问题,可以使用 DecisionTreeClassifier;如果是回归问题,可以使用 DecisionTreeRegressor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值