【LangGraph】什么是检查点(Checkpointer)

LangGraph 是 LangChain 生态的扩展框架,专注于构建复杂、有状态、多步骤的交互式 AI 系统,特别适合需要动态路由、循环和状态管理的应用场景,例如智能代理和自动化工作流。Checkpointer 是 LangGraph 中的核心组件,用于实现状态的持久化,确保状态图在多次交互中能够保存和加载状态,从而支持会话记忆、错误恢复和人工干预等功能。


1. 定义与功能

1.1 什么是 Checkpointer?

Checkpointer 是 LangGraph 中的一个机制,负责在状态图的每次执行步骤中保存图的当前状态(称为检查点,Checkpoint),并在需要时加载这些状态以恢复执行。它通过持久化状态支持以下关键功能:

  • 会话记忆:保存用户交互历史,确保多轮对话或跨会话的上下文一致性。
  • 错误恢复:在执行失败时,恢复到最近的成功检查点,继续执行。
  • 人工干预:支持人工审核、编辑代理行为或插入输入。
  • 时间旅行:允许查看和编辑历史检查点,探索替代执行路径,适用于调试和优化。

Checkpointer 的核心目标是增强状态图的持久性和可恢复性,使其适用于需要长期上下文的复杂应用。

1.2 设计理念

  • 灵活性:支持多种存储后端,从内存到生产级数据库,适应不同场景。
  • 透明性:对开发者透明,状态保存和加载由 LangGraph 运行时自动处理。
  • 版本化:通过检查点版本管理,支持状态历史追踪和回滚,类似文档编辑器的自动保存。
  • 异步支持:提供同步和异步接口,优化高并发场景。

2. 实现与接口

2.1 基础类

Checkpointer 的核心抽象类是 langgraph.checkpoint.base.BaseCheckpointSaver,定义了保存和加载检查点的标准接口。主要方法包括:

  • 同步方法
    • put: 保存检查点。
    • get: 获取指定检查点。
    • list: 列出检查点历史。
  • 异步方法
    • aput: 异步保存检查点。
    • aget: 异步获取检查点。
    • alist: 异步列出检查点历史。

关键属性:

  • serde: 序列化器(SerializerProtocol),用于编码/解码检查点数据,默认使用 JsonPlusSerializer

相关类:

  • Checkpoint: 表示状态快照,包含状态数据和元数据。
  • CheckpointMetadata: 存储检查点的元数据,如时间戳和线程 ID。
  • PersistentDict: 内存中的持久化字典,用于 InMemorySaver

2.2 具体实现

LangGraph 提供多种 Checkpointer 实现,适用于不同场景:

实现类型用途安装命令备注
InMemorySaver测试和调试,内存存储无需额外安装,来自 langgraph.checkpoint.memory不适合生产,适合快速原型
SqliteSaver本地轻量级同步存储pip install langgraph-checkpoint-sqlite适合本地实验和开发
AsyncSqliteSaver本地轻量级异步存储pip install aiosqlite langgraph-checkpoint-sqliteaiosqlite 支持,适合异步场景
PostgresSaver生产环境,PostgreSQL 存储pip install langgraph-checkpoint-postgres推荐生产环境,需数据库连接
AsyncPostgresSaver生产环境,异步 PostgreSQL 存储pip install langgraph-checkpoint-postgres适合高并发生产场景
MongoDBSaverMongoDB 存储pip install langgraph-checkpoint-mongodb适合 NoSQL 场景,需 MongoDB 集群
AsyncMongoDBSaver异步 MongoDB 存储pip install langgraph-checkpoint-mongodb异步版本,需 pymongo 支持
RedisSaverRedis 存储pip install langgraph-checkpoint-redis适合高性能缓存场景,需 Redis 服务器
AsyncRedisSaver异步 Redis 存储pip install langgraph-checkpoint-redis异步版本,适合高并发缓存场景
  • 生产推荐PostgresSaverAsyncPostgresSaver 是生产环境的首选,因其稳定性高且支持大规模部署。
  • LangGraph API:云端用户无需手动配置 Checkpointer,平台自动处理。
  • 子图支持:子图默认继承父图的 Checkpointer,若需独立内存,可在编译时设置 checkpointer=True

2.3 状态与线程

  • 状态格式:状态通常是字典或 TypedDict,包含 messages 等字段,具体由状态图定义。
  • 线程管理:通过 thread_id(配置中的 configurable.thread_id)区分不同会话或用户,确保检查点隔离。

3. 使用方法

3.1 基本用法

Checkpointer 在状态图编译时通过 checkpointer 参数传入。以下是一个使用 InMemorySaver 的示例:

from langgraph.checkpoint.memory import InMemorySaver
from langgraph.graph import StateGraph
from langchain_core.messages import HumanMessage

# 定义状态
class State(TypedDict):
    messages: List[BaseMessage]

# 定义状态图
workflow = StateGraph(State)
workflow.add_node("agent", lambda state: {"messages": state["messages"] + [AIMessage(content="Hello!")]})

# 添加边
workflow.add_edge("agent", END)
workflow.set_entry_point("agent")

# 创建 Checkpointer
checkpointer = InMemorySaver()

# 编译图
graph = workflow.compile(checkpointer=checkpointer)

# 运行,指定 thread_id
config = {"configurable": {"thread_id": "1"}}
input_message = HumanMessage(content="hi")
result = graph.invoke({"messages": [input_message]}, config)
print(result["messages"])  # 输出: [HumanMessage("hi"), AIMessage("Hello!")]
解析
  • CheckpointerInMemorySaver 保存状态到内存。
  • Thread IDthread_id="1" 标识会话,允许多个会话并行。
  • 状态保存:每次节点执行后,状态自动保存,可通过 thread_id 恢复。

3.2 检查点管理

Checkpointer 提供方法管理检查点:

  • 获取状态graph.get_state(config) 返回当前检查点。
  • 历史记录graph.get_state_history(config) 列出所有历史检查点。
  • 更新状态checkpointer.put(config, checkpoint, metadata) 更新检查点。
  • 删除线程checkpointer.delete_thread(thread_id) 删除会话数据。

示例:

# 查看当前状态
state = graph.get_state(config)
print(state.values)  # 输出: {"messages": [...]}

# 查看历史
for checkpoint in graph.get_state_history(config):
    print(checkpoint.values)

3.3 数据库 Checkpointer

以下是使用 PostgresSaver 的生产环境示例:

from langgraph.checkpoint.postgres import PostgresSaver
import psycopg

# 连接 PostgreSQL
with psycopg.connect("dbname=langgraph user=postgres password=secret") as conn:
    checkpointer = PostgresSaver(conn=conn)
    # 初始化表
    checkpointer.setup()

    # 编译图
    graph = workflow.compile(checkpointer=checkpointer)

    # 运行
    config = {"configurable": {"thread_id": "2"}}
    result = graph.invoke({"messages": [HumanMessage(content="hi")]}, config)
解析
  • 数据库连接:使用 psycopg 连接 PostgreSQL。
  • 初始化checkpointer.setup() 创建检查点表。
  • 持久化:状态保存到数据库,支持跨会话恢复。

4. 使用场景

Checkpointer 适用于以下场景:

  • 聊天机器人:保存对话历史,支持多轮交互和上下文记忆,例如虚拟客服记录客户问题。
  • 自动化工作流:在长运行任务中保存中间状态,方便错误恢复或暂停/恢复。
  • 人工干预:实现工具审批或等待人工输入,例如人工审核代理生成的答案。
  • 时间旅行:调试复杂工作流,编辑历史状态以测试不同执行路径。
  • 教育平台:记录用户学习进度,跨会话恢复状态。

示例场景

  • 客服机器人:用户中断对话后,Checkpointer 恢复历史状态,继续交互。
  • 数据管道:任务失败时,恢复到最近检查点,避免重新运行整个流程。

5. 注意事项

  1. 版本兼容性

    • LangGraph v0.2 及以上支持新 Checkpointer 库,确保使用最新版本(截至 2025 年 5 月 17 日)。
    • 安装特定 Checkpointer 的包(如 langgraph-checkpoint-postgres)。
  2. 存储选择

    • 测试:使用 InMemorySaver,但不适合生产环境。
    • 生产:优先选择 PostgresSaverAsyncPostgresSaver,确保数据持久性和扩展性。
  3. 线程管理

    • 始终指定唯一的 thread_id,避免会话冲突。
    • 定期清理无用线程,释放存储空间。
  4. 性能优化

    • 高并发场景使用异步 Checkpointer(如 AsyncPostgresSaver)。
    • 优化状态大小,避免保存冗余数据。
  5. 调试

    • 使用 graph.get_stateget_state_history 检查状态。
    • 启用 debug=True 查看详细日志。
    • 使用 graph.get_graph().to_dot() 可视化状态图。
  6. 自定义 Checkpointer

    • 可扩展 BaseCheckpointSaver 实现自定义存储(如 DynamoDB)。
    • 社区讨论(如 GitHub)提到 MongoDB 等 NoSQL 实现,但需验证生产就绪性。

6. 总结

LangGraph 中的 Checkpointer 是一个强大的状态持久化组件,通过保存和加载检查点支持会话记忆、错误恢复、人工干预和时间旅行等功能。它提供多种实现,从内存存储(InMemorySaver)到生产级数据库(PostgresSaver),适应测试到部署的各种场景。Checkpointer 与状态图和工具节点无缝集成,增强了代理和复杂工作流的鲁棒性,特别适合聊天机器人、自动化任务等需要长期上下文的应用。正确配置 thread_id 和选择合适的存储后端是确保其有效运行的关键。

python+opencv简谱识别音频生成系统源码含GUI界面+详细运行教程+数据 一、项目简介 提取简谱中的音乐信息,依据识别到的信息生成midi文件。 Extract music information from musical scores and generate a midi file according to it. 二、项目运行环境 python=3.11.1 第三方库依赖 opencv-python=4.7.0.68 numpy=1.24.1 可以使用命令 pip install -r requirements.txt 来安装所需的第三方库。 三、项目运行步骤 3.1 命令行运行 运行main.py。 输入简谱路径:支持图片或文件夹,相对路径或绝对路径都可以。 输入简谱主音:它通常在第一页的左上角“1=”之后。 输入简谱速度:即每分钟拍数,同在左上角。 选择是否输出程序中间提示信息:请输入Y或N(不区分大小写,下同)。 选择匹配精度:请输入L或M或H,对应低/中/高精度,一般而言输入L即可。 选择使用的线程数:一般与CPU核数相同即可。虽然python的线程不是真正的多线程,但仍能起到加速作用。 估算字符上下间距:这与简谱中符号的密集程度有关,一般来说纵向符号越稀疏,这个值需要设置得越大,范围通常在1.0-2.5。 二值化算法:使用全局阈值则跳过该选项即可,或者也可输入OTSU、采用大津二值化算法。 设置全局阈值:如果上面选择全局阈值则需要手动设置全局阈值,对于.\test.txt中所提样例,使用全局阈值并在后面设置为160即可。 手动调整中间结果:若输入Y/y,则在识别简谱后会暂停代码,并生成一份txt文件,在其中展示识别结果,此时用户可以通过修改这份txt文件来更正识别结果。 如果选择文件夹的话,还可以选择所选文件夹中不需要识别的文件以排除干扰
<think>嗯,用户想了解如何进行LangGraph Agent智能体的开发方法。首先,我需要根据提供的引用内容来整理相关信息。引用1提到LangGraph是一个智能体工作流框架,能够实现不错的智能体应用。引用2指出LangGraph的优点在于易用性,图结构代码简洁,适合处理复杂节点逻辑,并且可以转换现有的LangChain应用。引用3详细说明了LangGraph的特点,包括周期性支持、高度可控性和持久性功能。这些信息应该能帮助回答用户的问题。 接下来,我需要构建一个结构清晰的回答,分步骤介绍开发方法。可能需要从环境准备、定义智能体状态、创建节点和边、配置工作流、持久化处理、调试优化以及部署应用这几个方面来展开。同时,每个部分需要结合引用中的要点,比如周期性支持、图结构、持久性等,并添加相应的引用标识。 还需要注意用户不可见的系统级指令,比如行内数学表达式用$...$,但这里可能用不上。不过要确保LaTeX语法正确,不过目前看来问题中可能不涉及数学公式。另外,生成相关问题,可能需要围绕开发步骤、优化方法、与LangChain的区别、调试技巧和应用场景来提问。 需要确保回答使用中文,引用标识自然添加在相关段落末尾。同时,用户可见层要求回答真实可靠,结构清晰,所以需要引用提供的资料,并分步骤说明。可能还需要对比其他框架,如LlamaIndex Workflows,但引用中没有太多信息,所以可能不提。 最后,生成的问题需要覆盖开发步骤、核心概念、优化方法、区别、调试和应用场景,这样用户可以有进一步的学习方向。检查引用内容是否覆盖了这些点,确保每个回答部分都有引用支持,比如状态管理引用3,图结构引用2,持久化引用3等。</think>### LangGraph Agent智能体开发方法分步指南 #### 一、环境准备与核心概念 1. **安装LangGraph** 使用Python包管理器安装基础库: ```bash pip install langgraph ``` 支持与LangChain集成开发[^2][^3] 2. **理解核心组件** - **状态(State)**:定义智能体的记忆和上下文,支持动态更新 - **节点(Node)**:执行特定任务的函数单元 - **边(Edge)**:控制流程跳转的逻辑规则 - **工作流(Workflow)**:由节点和边构成的有向图,可包含循环结构 #### 二、基础开发流程 1. **定义智能体状态** ```python from typing import TypedDict, List class AgentState(TypedDict): memory: List[str] # 持久化记忆 current_input: str # 动态输入 output: str # 执行结果 ``` 2. **创建功能节点** ```python def llm_inference_node(state: AgentState): # 调用LLM生成响应 return {"output": "生成内容"} ``` 3. **构建工作流** ```python from langgraph.graph import END, StateGraph workflow = StateGraph(AgentState) workflow.add_node("llm_node", llm_inference_node) workflow.set_entry_point("llm_node") workflow.add_edge("llm_node", END) ``` #### 三、高级功能实现 1. **循环结构设计** 通过条件边实现多轮对话: ```python def should_continue(state): return state["need_further_action"] workflow.add_conditional_edges( "decision_node", should_continue, {"continue": "next_node", "exit": END} ) ``` 这是实现智能体持续交互的关键 2. **持久化处理** ```python from langgraph.checkpoint import MemorySaver memory = MemorySaver() app = workflow.compile(checkpointer=memory) ``` 支持跨会话状态保存 #### 四、调试与优化 1. **可视化工具** 使用`workflow.get_graph().draw_mermaid()`生成流程图 便于理解复杂逻辑关系[^2] 2. **性能优化建议** - 限制单次循环处理时间 - 设置最大迭代次数 - 异步执行耗时操作 #### 五、部署实践 ```python # 运行智能体 inputs = {"current_input": "用户问题"} for step in app.stream(inputs): print(f"中间状态: {step}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值