AI是如何看穿一篇文章是由AI生成的?

今天我们要探讨的这个问题是个非常有意思的问题,其实AI是否能识别AI生成的文章,本质上就是在玩“AI识别AI”的游戏。目前市面上的主流方法主要有以下几种:


✅ 一、重复度&概率分布检测(语言模型打分)

AI写文章是靠“猜下一个词”的,这种猜法基于训练数据,所以有一定“套路”。

  • 检测方法:用另一个AI语言模型来“打分”,判断文章中每个词出现的概率。
  • 比如:人类写作中,会有高概率词和低概率词混杂;AI写的,往往更“平滑”,缺少高低起伏。
  • 工具案例:OpenAI 的 Text Classifier(已下线),GPTZero、GLTR 等工具。

特征表现

  • 太过流畅、逻辑严密,但缺乏突兀性与跳跃性。
  • 喜欢用套话、模板化语法(比如“在当今社会……”“综上所述……”)。

✅ 二、格式与风格检测(“AI味”)

AI写作风格通常有几个“弱点”:

  • 语气中庸:不太会冒险表达极端或情绪化观点。
  • 结构清晰过头:总是“引言-展开-总结”这种格式。
  • 用词雷同:词汇池比人类大,但却容易“撞模板”。

✔️ 有经验的人类(尤其是写作者或编辑)凭直觉就能看出“AI味”,比如你可能自己都能感觉某段话太“正经”、太“没灵魂”了。


✅ 三、统计特征分析(比如句长、词频、动词使用)

一些研究发现,AI写的文章在统计层面上有显著差异,比如:

特征 人类写作 AI写作
平均句长 较有波动 比较一致
高频词比例 更个性化 接近训练集平均分布
情感动词使用 真实自然 更趋中性

这种检测方式适合大批量文章检测,精度较低,但成本低。


✅ 四、原文是否能被反向追溯(AI“署名”)

  • 有些AI服务商会在生成内容中嵌入隐形水印(比如 OpenAI 正在研究的“统计水印技术”),人眼看不出来,但AI能查出来。
  • 举个例子:每几个词设置一个“偏移概率”,比如每隔10个词加一个“奇异表达”,可以作为标记。

✅ 五、训练数据对比(查重/相似度比对)

有些AI生成内容是“缝合怪”——拼接自已有内容或公共语料。

  • 检测方法:和网络已有内容进行高相似度对比。
  • 缺点:对于原创性强的AI文章(比如你写的小说),这种方法失效。

下面咱们就从程序员的角度,手把手讲讲AI是怎么“识破”另一段文本是AI写的?


🎯 场景假设

你是一位写技术博客的程序员,文章可能是你写的,也可能是某个AI模型(比如GPT)写的。现在你要判断这篇文章是不是AI生成的。


一、基于语言模型的概率分析

🧪 原理:AI喜欢“猜大概率词”,人类却偶尔“乱跳词”

我们可以用 transformers 库加载一个语言模型,比如 GPT2,来看看一段文本中,词语的预测概率是高是低。

⚠️ 低熵 + 高流畅性 = 更有可能是 AI 写的。

🧑‍💻 示例代码:

from transformers import GPT2Tokenizer, GPT2LMHeadModel
import torch
import numpy as np

# 加载模型与分词器
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
model.eval()

def
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工之梦

感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值