Convert Pyspark dataframe to dictionary

本文介绍两种将PySpark DataFrame转换为字典的方法。方法一使用RDD和lambda表达式,方法二利用withColumn和create_map函数,适用于大数据处理场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                    Convert Pyspark dataframe to dictionary

input:

Col0, Col1
-----------
A153534,BDBM40705
R440060,BDBM31728
P440245,BDBM50445050

output:

{'A153534': 'BDBM40705'}, {'R440060': 'BDBM31728'}, {'P440245': 'BDBM50445050'}

Method1:

df.rdd.map(lambda x: {x.Col0: x.Col1}).collect()

[{'A153534': 'BDBM40705'}, {'R440060': 'BDBM31728'}, {'P440245': 'BDBM50445050'}]

Method2:

df = spark.read.csv('/FileStore/tables/Create_dict.txt',header=True)

df = df.withColumn('dict',to_json(create_map(df.Col0,df.Col1)))

df_list = [row['dict'] for row in df.select('dict').collect()]

print df_list

['{"A153534":"BDBM40705"}',
 '{"R440060":"BDBM31728"}',
 '{"P440245":"BDBM50445050"}']

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值