图像局部特征
文章平均质量分 68
小羊哈利
这个作者很懒,什么都没留下…
展开
-
图像局部特征学习(笔记1之图像尺度)
从今天开始,尝试着将自己学习图像局部特征的内容纪录下来。学习过程主要参考的是王永明老师编写的《图像局部不变性特征与描述》,同时也参看了各方面的博客主页。尺度:个人觉得尺度就是观察图像内容的一种度量,通俗来讲就是距离场景的远近,书中在描述尺度时,举例说以长度单位cm,来描述一棵树是比较合适的,mm和km其实在这种情况下也是尺度,只是这个尺度不是最合适的,我们在图像局部特征检测以及描述时,期待的是寻找原创 2015-09-17 11:16:14 · 2992 阅读 · 0 评论 -
RANSAC笔记
刚来实验室那会儿,每周组会汇报,师兄报告时,和老板讨论,总听到“那就对数据RANSAC一下”……当时我怯生生的问了一下师兄,啥叫RANSAC?现在也不记得师兄咋解释的,后来自己也经常调用matlab里的ransac函数求解单应性矩阵,但是对其具体原理我还真没花时间去了解一下,今天就做一下笔记,理解理解什么叫RANSAC。什么叫RANSAC?直译过来随机采样一致性(random sample cons原创 2015-11-01 19:16:59 · 5851 阅读 · 2 评论 -
图形学之腐蚀膨胀
腐蚀(erode)膨胀(dilate)其实是两种非常形象的操作,但是有的时候容易搞混淆。腐蚀(erode),是将灰度值小(视觉上就是比较暗)的区域增强扩展,主要用来去除比较亮的噪点。膨胀(dilate),是将灰度值大(视觉上就是比较亮)的区域增强扩展,主要用来连通相似颜色或强度的区域。然后腐蚀与膨胀涉及的一个重要概念就是核,也可以称之为模板或者掩码。核具有几个重要的属性,形状(圆形、方形、十字原创 2015-10-23 17:18:10 · 8713 阅读 · 0 评论 -
图像局部特征学习(笔记1之Canny边缘检测算子)
Canny首先提出的一个概念就是边缘检测算子优劣的三条标准。 总结下:算子对噪声是否敏感,是否存在漏检的情况算子的边缘定位是否准确,检测到的边缘与实际边缘的距离尽可能小对每条边缘只有一次响应,只得到一个点上述三条标准,都存在对应的数学公式,在这里我就不列出,因为我也不是很能讲清楚。Canny边缘检测算子是一种能满足上述三条标准的一阶微分算子,性能非常优秀!Canny算子主要分为4个步骤原创 2015-10-22 19:03:35 · 1768 阅读 · 0 评论 -
图像局部特征学习(笔记1之SUSAN角点检测)
SUSAN(smallest univalue segment assimilating nucleus最小核值相似区)SUSAN是角点检测的一种,其原理跟Harris很相像,Harris是利用一个固定尺寸的正方形窗口的滑动,检测其滑动前后窗口内灰度变化来进行角点的检测判断。而SUSAN简单而言就是是利用一个固定尺寸的圆形窗口,但是其没有滑动,直接比较圆形窗口内像素与中心像素(Nucleus)的灰度原创 2015-09-19 18:54:44 · 2584 阅读 · 0 评论 -
图像局部特征学习(笔记1之具有尺度不变性的Harris角点)
Harris角点的不变性与局限性:由于Harris角点检测涉及到了图像的一阶微分运算,因此Harris角点对图像亮度和对比度具有不变性;同时角点检测利用的是二阶矩的特征值,对应于椭圆区域的长轴和短轴的倒数,因此具有旋转不变性。但是其不具备尺度不变性,下图就可以说明这种情况 具有尺度不变性的Harris角点检测:相对普通的Harris角点检测,其发生改变的主要在二阶矩的表现形式上: 具备尺度原创 2015-09-19 17:26:23 · 4151 阅读 · 0 评论 -
GLCM(灰度共生矩阵)
定义:由于纹理是由灰度分布在空间位置上反复出现而形成的,因而在图像空间中相隔某距离的两象素之间会存在一定的灰度关系,即图像中灰度的空间相关特性。灰度共生矩阵就是一种通过研究灰度的空间相关特性来描述纹理的常用方法。GLCM(i,j,θ,d)=#(f(x,y)=i,f(x+dcosθ,y+dsinθ)=j)GLCM(i,j,\theta,d)=\#(f(x,y)=i,f(x+dcos\theta,y+d原创 2015-11-08 11:56:46 · 3386 阅读 · 0 评论 -
LBP(局部二值模式)
LBP英文全称是Local Binary Pattern,LBP是一种有效的描述图像局部纹理特征的descriptor,它是由T.Ojala在1994年提出来的,用于纹理特征提取,经过其改善,具备了旋转不变性和灰度不变性(这里所谓的灰度不变性,个人觉得就是单调光照不变性)。如今广泛运用于纹理分类、纹理分割、人脸图像分析等领域。最初的LBP特征设计在3x3的窗口内,以窗口中心像素为阈原创 2015-11-08 18:45:57 · 6542 阅读 · 0 评论 -
图像局部特征学习(笔记1之Harris角点)
角点:有两种比较普遍的定义角点是两个边缘的交点角点是邻域内具有两个主方向的特征点(这个主方向,其实我一直是迷糊,但是参考PCA,觉得其想说的是在在两个方向上灰度变化比较大,也就是此时的角点邻域内的点,不再是一个二维的点(x,y),而是一个三维的点(x,y,I)其中I是像素位置(x,y)对应的灰度值。当存在两个主方向时,也就意味着存在两个较大的特征值。)角点检测的主要思路:第一种基于图像边缘的原创 2015-09-19 11:12:34 · 1383 阅读 · 0 评论 -
图像局部特征学习(笔记1之边缘检测)
边缘所谓边缘,就是指图像中灰度强烈变化的区域。这个强烈变化,就很容易想到微分运算。(PS:涉及到微分运算,就要想到去噪,因为微分运算对噪声是很敏感的。)算法分类一阶微分边缘算子,经典算子比如:Roberts(罗伯特)、Prewitt(普鲁伊特)、Sobel(索贝尔),Canny(坎尼)等。二阶微分边缘算子,LOG边缘检测算子。简要介绍一下,Roberts(罗伯特)、Prewitt(普鲁伊特)、原创 2015-10-22 09:46:05 · 1677 阅读 · 0 评论 -
图像局部特征学习(笔记1之斑点检测)
斑点:斑点有区别于角点和边缘,斑点主要描述的是一个区域。该区域相对其周围的像素在颜色或者灰度上有明显区别。虽然称之为点,但不是说明该区域很小。在纯色的背景中,里面单一的物体(比如雕塑)也可以称之为斑点。 当然比较经典的向日葵图片是斑点检测的常用数据。 斑点检测常用的两种方法:LOG检测和DOH检测LOG检测:Laplace of Guassian(高斯拉普拉斯)是一种比较常用的斑点检测方法。原创 2015-09-18 10:05:07 · 3331 阅读 · 0 评论 -
图像处理和图像识别中常用到的OpenCV函数
2、cvNamedWindow:在屏幕上创建一个窗口;3、cvShowImage:在一个已创建好的窗口中显示图像;4、cvWaitKey:使程序暂停,等待用户触发一个按键操作;5、cvReleaseImage:释放图像文件所分配的内存;6、cvDestroyWindow:销毁显示图像文件的窗口;7、cvCreateFileCapture:通过参数设置确定要读转载 2015-11-06 15:49:08 · 482 阅读 · 0 评论 -
SIFT特征检测
作为在CV界叱咤风云多年的SIFT,David Lowe1999年提出来,2005年完善发表在IJCV上。至今已经作为一道丰碑屹立CV界十年不倒,不可谓不震古烁今。作为最经典的高效斑点检测算子之一,对于学习局部特征的我来说,研读必要性不言而喻。这篇文章,将主要介绍SIFT特征提取的过程,当然网上已经有了各种介绍SIFT的博文,其中很多准确的分析给了我很大的指导。太多就不一一列举,不过推荐大家关注一下原创 2015-10-29 09:49:40 · 799 阅读 · 0 评论