Numpy 数组基本运算 (五)

数组的算术运算是按元素逐个运算。数组运算后将创建包含运算结果的新数组。

>>>a= np.array([20,30,40,50])  
>>>b= np.arange( 4)  
>>> b  
array([0, 1, 2, 3])  
>>> c= a-b  
>>> c  
array([20, 29, 38, 47])  
>>> b**2  
array([0, 1, 4, 9])  
>>> 10*np.sin(a)  
array([ 9.12945251,-9.88031624, 7.4511316, -2.62374854])  
>>> a<35  
array([True, True, False, False], dtype=bool)  

#NumPy中的乘法运算符*按元素逐个计算,矩阵乘法可以使用dot函数或创建矩阵对象实现 

>>> A= np.array([[1,1],  
...[0,1]])  
>>> B= np.array([[2,0],  
...[3,4]])  
>>> A*B # 逐个元素相乘  
array([[2, 0],  
       [0, 4]])  
>>> np.dot(A,B) # 矩阵相乘  
array([[5, 4],  
       [3, 4]])  
#有些操作符如+=和*=用来更改已存在数组而不创建一个新的数组。

>>> a= np.ones((2,3), dtype=int)  
>>> b= np.random.random((2,3))  
>>> a*= 3  
>>> a  
array([[3, 3, 3],  
       [3, 3, 3]])  
>>> b+= a  
>>> b  
array([[ 3.69092703, 3.8324276, 3.0114541],  
        [ 3.18679111, 3.3039349, 3.37600289]])  
>>> a+= b # b转换为整数类型  
>>> a  
array([[6, 6, 6],  
           [6, 6, 6]])  
#当数组中存储的是不同类型的元素时,数组将使用占用更多位(bit)的数据类型作为其本身的数据类型,也就是偏向更精确的数据类型(这种行为叫做upcast)。
>>> a= np.ones(3, dtype=np.int32)  
>>> b= np.linspace(0,np.pi,3)  
>>> b.dtype.name  
'float64'  
>>> c= a+b  
>>> c  
array([ 1., 2.57079633, 4.14159265])  
>>> c.dtype.name  
'float64'  
>>> d= exp(c*1j)  
>>> d  
array([ 0.54030231+0.84147098j,-0.84147098+0.54030231j,  
        -0.54030231-0.84147098j])  
>>> d.dtype.name  
'complex128'  


#许多非数组运算,如计算数组所有元素之和,都作为ndarray类的方法来实现,使用时需要用ndarray类的实例来调用这些方法。
>>> a= np.random.random((2,3))  
>>> a  
array([[ 0.65806048, 0.58216761, 0.59986935],  
           [ 0.6004008, 0.41965453, 0.71487337]])  
>>> a.sum()  
   3.5750261436902333  
>>> a.min()  
     0.41965453489104032  
>>> a.max()  
     0.71487337095581649 

#这些运算将数组看作是一维线性列表。但可通过指定axis参数(即数组的行)对指定的轴做相应的运算:

>>> b= np.arange(12).reshape(3,4)  
>>> b  
array([[ 0, 1, 2, 3],  
           [ 4, 5, 6, 7],  
           [ 8, 9, 10, 11]])  
>>> b.sum(axis=0) # 计算每一列的和,注意理解轴的含义,参考数组的第一篇文章  
array([12, 15, 18, 21])  
>>> b.min(axis=1) # 获取每一行的最小值  
array([0, 4, 8])  
>>> b.cumsum(axis=1) # 计算每一行的累积和  
array([[ 0, 1, 3, 6],  
           [ 4, 9, 15, 22],  
           [ 8, 17, 27, 38]])  


参考和转载:

http://blog.csdn.net/sunny2038/article/details/9023797




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值