卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名。
引例:
出栈次序
首先,我们设f(n)=序列个数为n的出栈序列种数。(我们假定,最后出栈的元素为k,显然,k取不同值时的情况是相互独立的,也就是求出每种k最后出栈的情况数后可用加法原则,由于k最后出栈,因此,在k入栈之前,比k小的值均出栈,此处情况有f(k-1)种,而之后比k大的值入栈,且都在k之前出栈,因此有f(n-k)种方式,由于比k小和比k大的值入栈出栈情况是相互独立的,此处可用乘法原则,f(n-k)*f(k-1)种,求和便是Catalan递归式。ps.author.陶百百)
Catalan数通项公式计算原理
非常规分析
对于每一个数来说,必须进栈一次、出栈一次。我们把
进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位
二进制序列。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于
出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。
在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数(改动:注①),此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。
反过来,任何一个由n+1个0和n-1个1组成的2n位
二进制数,由于0的个数多2个,2n为
偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。(注②)
因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。(注③)
显然,不符合要求的方案数为c(2n,n+1)。由此得出输出序列的总数目=c(2n,n)-c(2n,n+1)=c(2n,n)/(n+1)=h(n)。
注:①解释:若存在不合法序列,则不合法序列一定在某一位上0的个数比1的个数多1。故0的个数-1的个数=1,0的个数+1的个数是奇数,所以一定在奇数位。
②若假定有n+2个0,n个1,一定存在某一位使1的个数比0的个数多1,故1的个数+0的个数是奇数。
③此处证明有问题:这里无法证明一个n+1,n-1的二进制只能对应一个不合法序列,也不能证明一个不合法序列只能对应一个n+1,n-1的二进制,也许二者数量相等,但不是一一对应。这个计算原理可以帮助记忆公式,并非严谨证明。