python hist的使用

hist的api参数很多,如果要知道每个含义得一个一个去试,看了doc,这个hist的参数挺多的,api中有个简明的例子,我们使用几个重要的参数即可

函数签名

 

[html]  view plain  copy
  1. matplotlib.pyplot.hist(  
  2. x, bins=10range=Nonenormed=False,   
  3. weights=Nonecumulative=Falsebottom=None,   
  4. histtype=u'bar'align=u'mid'orientation=u'vertical',   
  5. rwidth=Nonelog=Falsecolor=Nonelabel=Nonestacked=False,   
  6. hold=None, **kwargs)  

 

x : (n,) array or sequence of (n,) arrays

这个参数是指定每个bin(箱子)分布的数据,对应x轴

bins : integer or array_like, optional

这个参数指定bin(箱子)的个数,也就是总共有几条条状图

normed : boolean, optional

If True, the first element of the return tuple will be the counts normalized to form a probability density, i.e.,n/(len(x)`dbin)

这个参数指定密度,也就是每个条状图的占比例比,默认为1

color : color or array_like of colors or None, optional

这个指定条状图的颜色

我们绘制一个10000个数据的分布条状图,共50份,以统计10000分的分布情况

"""
Demo of the histogram (hist) function with a few features.

In addition to the basic histogram, this demo shows a few optional features:

    * Setting the number of data bins
    * The ``normed`` flag, which normalizes bin heights so that the integral of
      the histogram is 1. The resulting histogram is a probability density.
    * Setting the face color of the bars
    * Setting the opacity (alpha value).

"""
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt


# example data
mu = 100 # mean of distribution
sigma = 15 # standard deviation of distribution
x = mu + sigma * np.random.randn(10000)

num_bins = 50
# the histogram of the data
n, bins, patches = plt.hist(x, num_bins, normed=1, facecolor='blue', alpha=0.5)
# add a 'best fit' line
y = mlab.normpdf(bins, mu, sigma)
plt.plot(bins, y, 'r--')
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15$')

# Tweak spacing to prevent clipping of ylabel
plt.subplots_adjust(left=0.15)
plt.show()



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值